scholarly journals A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies

2009 ◽  
Vol 2009 ◽  
pp. 1-22 ◽  
Author(s):  
Mhand Hifi ◽  
Rym M'Hallah

This paper reviews the most relevant literature on efficient models and methods for packing circular objects/items into Euclidean plane regions where the objects/items and regions are either two- or three-dimensional. These packing problems are NP hard optimization problems with a wide variety of applications. They have been tackled using various approaches-based algorithms ranging from computer-aided optimality proofs, to branch-and-bound procedures, to constructive approaches, to multi-start nonconvex minimization, to billiard simulation, to multiphase heuristics, and metaheuristics.

Author(s):  
Santosh Tiwari ◽  
Georges Fadel ◽  
Peter Fenyes

In this paper, a compact packing algorithm for the placement of objects inside a container is described. The proposed packing algorithm is designed to pack three-dimensional free-form objects inside an arbitrary enclosure such that the packing efficiency is maximized. The proposed packing algorithm can handle objects with holes or cavities, and its performance does not degrade significantly with the increase in complexity of the enclosure or the objects. The packing algorithm takes as input the tessellated geometry of the container and all the objects to be packed and outputs the list of objects that can be placed inside the enclosure. The packing algorithm also outputs the location and orientation of all the objects, the packing sequence, and the packed configuration. An improved layout algorithm that works with arbitrary container geometry is also proposed. Separate layout algorithms for the SAE and ISO luggage are developed. Several heuristics to improve the performance of the packing algorithm are also incorporated. Certain aspects that facilitate fast and efficient handling of the computer aided design (CAD) data are also discussed. A comprehensive benchmarking of the proposed packing algorithm on synthetic and hypothetical problems reflects its superior performance as compared with other similar approaches.


2018 ◽  
Author(s):  
◽  
Andile Ntanjana

The present research work deals with the implementation of heuristics and genetic algo- rithms to solve various bin packing problems (BPP). Bin packing problems are a class of optimization problems that have numerous applications in the industrial world, ranging from efficient cutting of material to packing various items in a larger container. Bin packing problems are known to be non-deterministic polynomial-time hard (NP-hard), and hence it is impossible to solve them exactly in polynomial time. Thus heuristics are very important to design practical algorithms for such problems. In this research we avoid the use of linear programming because we consider it to be a very cumbersome approach for analysing these types of problems and instead we proposed a simple and very efficient algorithm which is a combination of the fi fi heuristic algorithm in combination with the genetic algorithm, to solve the two and three – dimensional bin packing problems. The packing was carried out in two phases, wherein the fi phase the bins are packed by means of the fi fi heuristic algorithm with the help of other auxiliary techniques, and in the second phase the genetic algorithm is implemented. The purpose of the second phase is to improve the initial arrangements by performing combinatorial optimization for either a limited number of bins or the whole set at one time without destroying the original pattern (elitist strategy). The programming code developed can be used to write high-speed and capable software, which can be used in real-time applications. To conclude, the developed optimization ap- proach signifi tly helps to handle the bin packing problem. Numerical results obtained by optimizing existing industrial problems demonstrated that in many cases it was possible to achieve the optimum solution within only a few seconds, whereas for large-scale complex problems the result was near optimum efficiency over 90% within the same period of time.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


2021 ◽  
Vol 13 (2) ◽  
pp. 563
Author(s):  
Bing Ran ◽  
Scott Weller

Despite the growing utility and prevalence of social entrepreneurship, an accepted definition remains elusive and infeasible. Yet, it is imperative that the principles guiding social entrepreneurship are identified so that common ground is established to facilitate future research. On the basis of a systematic literature review, this conceptual paper proposes a theoretical framework outlining social entrepreneurship as a three-dimensional framework as a function of continua of “social” and “business” logics, “beneficial” and “detrimental” social change logics, and “innovation” and “mundane” logics. The framework accommodates the fuzziness and ambiguity associated with social entrepreneurship whilst remaining a workable, identifiable construct. By accounting for the shifting logics practiced by social entrepreneurship that both influence and are influenced by the organizational environment, this framework provides an exit strategy for the definitional elusiveness of social entrepreneurship. The resultant structures and functions of social entrepreneurship are shaped by these constraints as reflected by the fluidity and flexibility endorsed by the framework. Four avenues for future research regarding social entrepreneurship are recommended on the basis of the framework proposed in this article.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Sign in / Sign up

Export Citation Format

Share Document