scholarly journals Morphological Investigation of Foamed Aluminum Parts Produced by Melt Gas Injection

2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
R. Surace ◽  
L. A. C. De Filippis ◽  
E. Niini ◽  
A. D. Ludovico ◽  
J. Orkas

Porous metal materials are a new class of materials with low densities, large specific surface, and novel physical and mechanical properties. Their applications are extremely varied: for light weight structural components, for filters and electrodes, and for shock or sound absorbing products. Recently, interesting foaming technology developments have proposed metallic foams as a valid commercial chance; foam manufacturing techniques include solid, liquid, or vapor state methods. The foams presented in this study are produced by Melt Gas Injection (MGI) process starting from melt aluminum. The aim of this investigation is to obtain complex foamed aluminum parts in order to make the MGI more flexible. This new method, called MGI-mould process, makes possible to produce 3D-shaped parts with complicated shape or configuration using some moulds obtained by traditional investment casting process.

1996 ◽  
Vol 431 ◽  
Author(s):  
Lori A. Vermeulen ◽  
J. Pattanayak ◽  
Travis Fisher ◽  
Monica Hansford ◽  
Scott J. Burgmeyer

AbstractSolid state metal phosphonates (M(O3P-R-PO3) or M(O3P-R)2 (M = metal)) have layered structures where the metal atoms lie in planar sheets and the intervening R groups take up the interlamellar space. Microporous metal phosphonates can be prepared by reaction of the metal with a mixture of large and small phosphonates (M(O3P-LARGE)x(O3P-SMALL)2-x. The larger group acts as a pillar that holds the layers apart. Void spaces result from the presence of the smaller groups. The porous nature of these solids make them potential candidates for applications as sensors, size- and shape- selective catalysts, and chromatographic materials. Metal diphosphonates (M(O3P-R-PO3) can also be prepared one layer at a time on a surface, resulting in the construction of interesting superstructures that are not accessible through the solid state synthesis. For example, these superstructures can contain different components in sequential layers and may have applications in energy conversion, vectorial electron transport, and NLO devices. The preparation of microporous thin films would combine the desirable potential applications of the porous solids with the interesting parallel superstructures that can be prepared from the thin film assemblies. We report our progress toward the construction of microporous metal phosphonate thin films. The two methods that are currently being developed include: 1) phosphonate exchange of pre-assembled films, and 2) co-deposition of different large and small phosphonates during film assembly.


Author(s):  
Martin Ruthandi Maina

Titanium and its alloys exhibit a unique combination of mechanical, physical properties and corrosion resistance behaviour which makes them desirable for aerospace, industrial, chemical, medical and energy industries. The selective addition of alloying elements to titanium enables a wide range of physical and mechanical properties to be obtained. Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Intense researches are being pursued in the development of new Ti-based alloys with bio-functionalization closer to human bone, owing to their excellent mechanical strength and resilience when compared to alternative biomaterials, such as polymers and ceramics. Several manufacturing techniques are capable of producing porous materials. There is a need to control pore size, shape, orientation and distribution. This work reviews the application of Ti-based alloys in the biomedical industry and also proposes laser additive manufacture process for the manufacture of medical implants.


Author(s):  
Yu Cheng Fang ◽  
H. Wang ◽  
Yong Zhou ◽  
Chun Jiang Kuang
Keyword(s):  

2019 ◽  
Vol 285 ◽  
pp. 464-469 ◽  
Author(s):  
Ulyate Andries Curle ◽  
Jeremias D. Wilkins

Semi-solid processing works on the principal of a solidification temperature interval of a substance. The substance is heated to a temperature within this interval so that there exists a related solid-liquid fraction ratio. The substance with this phase structure is then shaped by a forging or casting process. It has been stated before that it is impossible to semi-solid process and cast pure metals or eutectic alloys due to their thermodynamic temperature invariance, meaning that there is no temperature interval. It was demonstrated recently that it is possible to semi-solid casting high purity aluminium (Curle UA, Möller H, Wilkins JD. Scripta Materialia 64 (2011) 479-482) and the Al-Si binary eutectic (Curle UA, Möller H, Wilkins JD. Materials Letters 65 (2011) 1469-1472). The working principal is that there exists a time interval during thermal arrest during which solidification takes place with a solid-liquid fraction ratio until all the liquid is consumed upon cooling. The aim with this work is to demonstrate that pure magnesium can also be rheo-high pressure die cast (R-HPDC) with the system developed at the CSIR in South Africa. Magnesium is notoriously difficult to cast due to the thermal properties of magnesium. The metal was poured into a cup, processed for about 6 seconds after which it was HPDC into a plate. The microstructure of the casting consists of a structure that was solid and a structure that was liquid during thermal arrest at the time of casting.


Soft Matter ◽  
2020 ◽  
Vol 16 (25) ◽  
pp. 5854-5860
Author(s):  
Alin Cristian Chipara ◽  
Gustavo Brunetto ◽  
Sehmus Ozden ◽  
Henrik Haspel ◽  
Partha Kumbhakar ◽  
...  

Here we report a new class of bio-inspired solid–liquid adhesive, obtained by simple mechanical dispersion of PVDF (polyvinylidene fluoride) (solid spheres) into PDMS (polydimethylsiloxane) (liquid).


2013 ◽  
Vol 411-414 ◽  
pp. 3064-3067 ◽  
Author(s):  
Han Wu Liu ◽  
Zhi Ping Zhang ◽  
Yan Fang Luo ◽  
Li Lu

In order to reduce the wear of parts caused by long-term friction, and to reduce the frequency of parts replacement, ZA alloy with low hardness and good wear resistance is chosen to replace the traditional copper alloy as the material to manufacture automotive bushing, and the semi-solid die casting is used. On this basis, the software AnyCasting is used to simulate and analyze the filling and solidification process, the filling sequence, the variation of temperature field, and the part region where defects are prone to occur in the semi-solid process. The simulation results show that under the parameters set in the simulation process, when casting filling rate reached 90%, the metal started to solidify; since the gate place is easy for heat dissipation, when the temperature of the alloy liquid reached its liquidus temperature 595°C, the phenomenon of solid-liquid phase separation appeared at the gate; the defects such as gas trapping, residual stress and deformation would appear both in the place of first filling and the parting surface; when the preheat temperature of the mold was 150°C-200°C,the alloy liquid possesses liquidity. The simulation results offer certain theoretical instruction to optimize the semi-solid casting process of ZA Alloy automotive bushing manufacturing, as well as reducing or avoiding a variety of quality defects arose in the actual casting process.


2007 ◽  
Vol 534-536 ◽  
pp. 949-952
Author(s):  
Yu Cheng Fang ◽  
H. Wang ◽  
Yong Zhou ◽  
Chun Jiang Kuang

Porous metal materials have been widely used in various industrial fields in the world. This paper describes the recent research achievements of CISRI in the development of porous metal materials. High performance porous metal materials, such as large dimensional and structure complicated porous metal aeration cones and tube, sub-micron asymmetric composite porous metal, metallic membrane, metallic catalytic filter elements, lotus-type porous materials, etc, have been developed.


Sign in / Sign up

Export Citation Format

Share Document