scholarly journals Hydrochemical Formation Mechanisms and Quality Assessment of Groundwater with Improved TOPSIS Method in Pengyang County Northwest China

2011 ◽  
Vol 8 (3) ◽  
pp. 1164-1173 ◽  
Author(s):  
Li Peiyue ◽  
Qian Hui ◽  
Wu Jianhua

Inverse geochemical modeling was used in this paper to quantitatively study the formation mechanisms of groundwater in Pengyang County, China. An improved TOPSIS method based on entropy weight was used to perform groundwater quality assessment in this area. The assessment results show that the groundwater in the study area is fit for human consumption and the high concentrations of some elements can be attributed to the strong water-rock interactions. The inverse geochemical modeling reveals that the dominant reactions in different parts of the study area are different. In the south part of the study area, the precipitation of sodium montmorillonite, calcite and the dissolution of gypsum, fluorite, halite, albite and dolomite as well as CO2dissolution and cation exchange are the major water-rock interactions, while in the north part, the leading reactions are the precipitation of gypsum, dolomite, sodium montmorillonite, fluorite, the dissolution of calcite and albite and the CO2emission and cation exchange are also important. All these reactions are influenced by the initial aquatic environment and hydrodynamic conditions of the flow path.

Author(s):  
Yifan Zhang ◽  
S. Thomas Ng

AbstractPublic transport networks (PTNs) are critical in populated and rapidly densifying cities such as Hong Kong, Beijing, Shanghai, Mumbai, and Tokyo. Public transportation plays an indispensable role in urban resilience with an integrated, complex, and dynamically changeable network structure. Consequently, identifying and quantifying node criticality in complex PTNs is of great practical significance to improve network robustness from damage. Despite the proposition of various node criticality criteria to address this problem, few succeeded in more comprehensive aspects. Therefore, this paper presents an efficient and thorough ranking method, that is, entropy weight method (EWM)–technology for order preference by similarity to an ideal solution (TOPSIS), named EWM–TOPSIS, to evaluate node criticality by taking into account various node features in complex networks. Then we demonstrate it on the Mass Transit Railway (MTR) in Hong Kong by removing and recovering the top k critical nodes in descending order to compare the effectiveness of degree centrality (DC), betweenness centrality (BC), closeness centrality (CC), and the proposed EWM–TOPSIS method. Four evaluation indicators, that is, the frequency of nodes with the same ranking (F), the global network efficiency (E), the size of the largest connected component (LCC), and the average path length (APL), are computed to compare the performance of the four methods and measure network robustness under different designed attack and recovery strategies. The results demonstrate that the EWM–TOPSIS method has more obvious advantages than the others, especially in the early stage.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 349
Author(s):  
Yuan Ma ◽  
Jingzhi Men ◽  
Mingyu Li ◽  
Xiaoyan Li

Rapid industrial development has caused a series of environmental problems, which is not conducive to sustainable development of society as a whole. It is necessary to build a sustainable development evaluation system. Most of the existing literature has evaluated corporate sustainable performance from the economy, environment and society on the basis of triple bottom lines. Considering the research gap and the practice need, an evaluation system is established from four dimensions, referred to as economy, society, environment and responsibility management, and 29 indicators are designed to measure these four dimensions. Twenty seven listed Chinese mining corporations are selected as research samples, and the entropy-weight-based Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is applied to calculate indicators’ weights. Results show that the four dimensions of sustainable performance weights from high to low are society, environment, economy, and management process.


2011 ◽  
Vol 50-51 ◽  
pp. 756-760
Author(s):  
Bao Feng Li ◽  
Jing Guo Qu ◽  
Pu Yu Hao

In this paper, using the relevant data of 34 teaching staffs who participate in the academic title evaluation of associate professor in 2010, firstly it introduces the entropy weight method, Topsis method with subjective weight, Topsis method with objective weight and double base points method with subjective weight to evaluate and sort the performance of 34 teaching staffs. Secondly, two combination evaluation models are constructed to do the same work and the conclusions are more science and rational.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Filippo Giarratana ◽  
Graziella Ziino ◽  
Valerio D'Andrea ◽  
Antonio Panebianco ◽  
Alessandro Giuffrida

n the last few years, the consumption of fish eggs has increased rapidly, finding widespread use also in mass catering. This increase has involved also those of the Peter’s fish (Zeus faber). Females of this species, by their reproductive characteristics, have highly developed gonads in different periods of the year, making the raw material easy to find. The aim of the present study was to perform a quality assessment of Zeus faber ovaries regularly commercialized for human consumption. A total number of 34 samples, divided in fresh (11) and frozen (23), were processed for microbiological characterization, parasitological and histological evaluations. Fresh and frozen samples have significant (P<0.01) differences in total bacterial charge, with values of 4.75±0.5 Log CFU/g and 3.65±0.7 Log CFU/g respectively. The mean value of Enterobacteriaceae was 2.58±0.7 Log CFU/g in fresh products, while 52.17% (12) of frozen samples reported loads of <1 Log CFU/g. No Salmonella spp. and Listeria monocytogenes were found. Aeromonas spp. was detected in two frozen sample (with loads of 2.2 and <1 Log CFU/g) and in 5 fresh ovaries with value ranged from 1.70 to 3.48 Log CFU/g. Vibrio spp. was found in 4 (36.36%) and 3 (13.04%) of fresh and frozen samples respectively, with loads always <1 Log CFU/g. All 31 Vibrio strains isolated, were identified as Vibrio alginolyticus, and 61.29% (19) of them was positive for the ToxRS factor and 6.45% (2) for ToxR. The 47.06% (16) of total samples showed infestations by larvae of Anisakis Type 1 in the serous and inside the ovary. In this last case, histologically it was found to be free larvae. This study attested satisfactory hygiene conditions for Zeus faber ovaries currently marked for human consumption. The presence of potentially pathogenic strains of V. alginolyticus and Aeromonas spp., but above all the frequent infestation by Anisakis larvae, represent a potentially hazard for the consumer.


2014 ◽  
Vol 18 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Peiyue Li ◽  
Jianhua Wu ◽  
Hui Qian

<p class="MsoNormal" style="line-height: 200%;">Statistical analyses, a Piper diagram, the saturation index and the correlations of chemical parameters were used to reveal the hydrogeochemistry and hydrogeochemical evolution of shallow groundwater in the southern part of the Zhongwei section of the Yellow River alluvial plain. The water quality for agricultural and domestic uses was also assessed in the study. The results suggest that the shallow groundwater in the study area is fresh to moderately mineralized water. Higher Ca<sup>2+</sup> and HCO<sub>3</sub><sup>-</sup> are observed in the less mineralized water, whereas Na<sup>+</sup> and SO<sub>4</sub><sup>2-</sup> are common ions in the highly mineralized water. The major hydrochemical facies for groundwater with total dissolved solids (TDS) &lt;1 g/L are HCO<sub>3</sub>-Ca·Mg and HCO<sub>3</sub>-Ca·Na·Mg, and for groundwater with TDS &gt; 1 g/L, SO<sub>4</sub>·Cl-Na and SO<sub>4</sub>·Cl-Na·Mg·Ca are the predominant hydrochemical types. The main reactions in the groundwater system are the dissolution/precipitation of gypsum, fluorite, halite, calcite and dolomite. Cation exchange is also important in controlling the groundwater chemistry. The water samples assessed in the paper are of acceptable quality for agricultural use, but most of them are not fit for direct human consumption (drinking). TDS, total hardness (TH), Cl<sup>-</sup> and SO<sub>4</sub><sup>2-</sup> are the main indices that result in the poor drinking water quality.</p><p class="MsoNormal" style="line-height: 200%;"> </p><p class="MsoNormal" style="line-height: 200%;"><strong>Resumen</strong></p><p>Análisis estadísticos, un diagrama de Piper, el índice de saturación y la correlación de los parámetros químicos fueron utilizados para revelar la hidrogeoquímica y la evolución hidrogeoquímica de las aguas subterráneas poco profundas en la parte sur de la sección Zhongwei en la planicie aluvial del río Amarillo. La calidad del agua para el uso doméstico y agrícola también fue evaluada en este estudio. Los resultados sugieren que las aguas subterráneas poco profundas en el área de estudio son entre frescas y moderadamente mineralizadas. Un índice mayor de Ca2+ y HCO3- se observó en las aguas menos mineralizadas, mientras que Na+ y SO42- son iones comunes en las aguas altamente mineralizadas. Los perfiles hidroquímicos predominantes para las aguas subterráneas con Total de Sólidos Disueltos (TDS) &lt;1 g/L son HCO3-Ca·Mg y HCO3-Ca·Na·Mg, y para las aguas subterráneas con TDS &gt;1 g/L, SO4·Cl-Na y SO4·Cl-Na·Mg·Ca. Las mayores reacciones en el sistema de aguas subterráneas son la disolución/ precipitación de yeso, fluorita, halita, calcita y dolomita. El intercambio de cationes también es importante en el control de la química de las aguas subterráneas. Las muestras de agua evaluadas en este manuscrito son de calidad aceptable para el uso agrícola, pero la mayoría no son aptas para el consumo humano. El índice TDS, la dureza total del agua (TH), Cl- y SO42- son las razones principales que influyen en la baja calidad de esta agua.</p>


2021 ◽  
Vol 35 (1) ◽  
pp. 7-16
Author(s):  
Maria da Conceição Gomes ◽  
Danilo Melo ◽  
Maíra da Costa ◽  
José Ângelo dos Anjos ◽  
Michael Trinta ◽  
...  

The geochemical analysis was carried out in the center-south portion of the state of Bahia, in the semi-arid region of Bahia, where outcrop the Paramirim Complex, Boquira Unit, Boquira Granite, Veredinha Granite, Serra do Espinhaço, detritus coverings and alluvial deposits. The Boquira Unit is known for lead-zinc mineralization. In this unit operated the Boquira mine, considered the largest lead and zinc mine in Brazil, until it was suddenly abandoned, leaving significant environmental liabilities of toxic metals such as lead, zinc, silver, barium, copper, chromium and nickel. To characterize the groundwater 16 physical-chemical parameters from 24 wells were used, obtained from the Water and Sanitation Engineering Company of Bahia - CERB. Its classification was made in the Piper Diagram and the ionic relations in meq/L. To evaluate the quality of the water we used the Consolidation Ordinance no 5/2017 of the Ministry of Health and World Health Organization. With the PHREEQC 3.5 hydrochemical model, the saturation index of the analyzed elements was calculated. The results showed predominance of calcium chloride waters (71% of the samples), with ionic relations of type rCa2+> rMg2+>rNa+ and rCl->rHCO3->rSO42+. Geochemical modeling indicated calcite (CaCO3), dolomite (CaMg(CO3)2) and quartz (SiO2) as the main minerals with a tendency to precipitation. The first two were associated with the dissolution of the Boquira Unit carbonates and the third one with the quartzites of the Serra do Espinhaço Formation. The concentrations of calcium and chloride showed 54% and 25% of the samples above the Maximum Allowable Value for human consumption, respectively, representing a risk factor to the health of the population in the area.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3361
Author(s):  
Muhammad Yousuf Jat Baloch ◽  
Wenjing Zhang ◽  
Juanfen Chai ◽  
Shuxin Li ◽  
Muwaffaq Alqurashi ◽  
...  

For shallow groundwater, hydrogeochemical processes and quality assessment must be addressed because shallow groundwater is freely available in many parts of the globe. Due to recent anthropogenic activities and environmental changes in Sakrand, Sindh, Pakistan, the groundwater is extremely vulnerable. To provide safe drinking and agricultural water, hydrogeochemical analysis is required. Ninety-five groundwater samples were analyzed using agricultural and drinking indices to determine the hydrogeochemical parameters using multivariate analysis such as Pearson correlations, principal component cluster analysis, as well as Piper diagrams and Gibbs plot for drinking and agricultural indices. An abundance of ions was observed through the statistical summary; however, cations and anions were recorded in the orders Na+ > Ca2+ > Mg2+ > K+ and HCO3− > Cl− > SO42− > NO3− > F−. The hydrogeochemical process used to quantify the major reactions occurring in the groundwater system showed rock dominance; the Piper diagrams evaluated the water type. A mixed pattern of calcium, magnesium, and chloride ions (Ca2+−Mg2+−Cl− type) was observed. Additionally, the ion exchange method showed an excess of bicarbonate ions due to carbonic acid weathering. The water quality index (WQI) resulted 32.6% of groundwater being unsuitable for human consumption; however, the United States Salinity Laboratory (USSL) diagram showed 60% of samples fall in the irrigable category and the Wilcox diagram depicted 5% of samples lying in the unsuitable region. Most of the water samples were suitable for drinking; only a few samples were unsafe for drinking purposes for children due to the high hazard index. High salinity meant some samples were unsuitable for irrigation.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Hao Wu ◽  
Jie Chen ◽  
Hui Qian ◽  
Xuedi Zhang

This work is aimed at reviewing the chemical characteristics and evaluation of the quality of exploited groundwater in Beijiao water source of Yinchuan. A coupled model based on osculating value method (OVM) and entropy is proposed to determine the suitability for drinking. Besides, phreatic water and confined water are evaluated for irrigation purposes and industrial purposes, respectively. Piper diagram shows different hydrochemical characteristics between aquifers, which can be explained by the control mechanisms revealed by Gibbs diagram. Chloroalkaline indices and ions relationship indicate that reverse ion exchanges occur in different aquifers. Based on the osculating values, 96% of the phreatic water samples are fit for human consumption, and the confined water can provide quality drinking water. Most of the phreatic water samples have no sodium hazard but have magnesium hazard. All the confined water samples generate mild foaming reaction, and 93% of them are mildly corrosive for boilers. An assessment by OVM without entropy is calculated. Similar results to the coupled model demonstrate that pure OVM is also objective and valid. The simple algorithm turns multicriteria decision-making problems into an integrated index which is just as useful to water quality assessment.


Sign in / Sign up

Export Citation Format

Share Document