scholarly journals Studies on Modification of Surface Properties in Polycarbonate (PC) Film Induced by DC Glow Discharge Plasma

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
K. A. Vijayalakshmi ◽  
M. Mekala ◽  
C. P. Yoganand ◽  
K. Navaneetha Pandiyaraj

The polycarbonate film (PC) surface was treated using glow discharge low-pressure air plasma. The modified surface was characterized by contact angle, FTIR, XRD, AFM, and XPS analysis. The surface-modified samples were further investigated using T-peel test for technical applications. The surface energy of the sample was estimated by measuring contact angle. The results show that, after plasma treatment, the root mean square (RMS) roughness of PC film was gradually increased with exposure time. Plasma treatment modified the chemical composition of the polymer surface and it made the surface to be highly hydrophilic. It was found that the air plasma treatment increases the polar component of PC film.

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1067 ◽  
Author(s):  
Aya E. Abusrafa ◽  
Salma Habib ◽  
Anton Popelka

Herein, the surface treatment of polyurethane (PU) films via air, O2, N2, Ar, and their mixtures were tested. The treatment was performed to incorporate new polar functionalities on the polymer surface and achieve improved hydrophilic characteristics. The PU films were subjected to RF low-temperature plasma treatment. It was found that plasma treatment immensely enhanced the hydrophilic surface properties of the PU films in comparison with those of the pristine samples; the maximum plasma effect occurred for the PU sample in the presence of air plasma with treatment time of 180 s at nominal power of 80 W. The surface topography was also found to vary with plasma exposure time and the type of gas being used due to the reactivity of the gaseous media. Roughness analysis revealed that at higher treatment times, the etching/degradation of the surface became more pronounced. Surface chemistry studies revealed increased O2 and N2 elemental groups on the surface upon exposure to O2, N2, air, and Ar. Additionally, the aging study revealed that samples treated in the presence of air and Ar were more stable in comparison to those of the other gases for both the contact angle and peel test measurements.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1293
Author(s):  
Xuehua Wang ◽  
Kenneth J. Cheng

The inner and outer surfaces of bamboo stems are usually removed prior to the manufacture of bamboo panels because the surfaces are hydrophobic and difficult to bond with glue. Hence, the recovery and utilization ratio of bamboo during processing is low. This study focused on using glow-discharge plasma to treat green bamboo surfaces to make them less hydrophobic. The effects of plasma treatment on green bamboo stems were examined using contact goniometry (wettability), non-contact confocal profilometry and scanning electron microscopy (SEM). Confocal profilometry and SEM revealed that the morphology of green bamboo surfaces varied between 3 different stems. Plasma was able to etch bamboo green surfaces, and make them rougher and more powdery. Plasma treatment was effective at converting green bamboo surfaces from hydrophobic (initial contact angle >110°) to hydrophilic (contact angle <20°). However, this effect was temporary and contact angle increased with time and recovered approximately 30% of its original value after 24 h. Based on our findings, we conclude that plasma treatment can alter parameters such as surface energy and roughness that could improve glue bonding of green bamboo, but delays between plasma treatment and further processing would need to be minimized.


2020 ◽  
Vol 992 ◽  
pp. 658-662
Author(s):  
M.A. Mokeev ◽  
L.A. Urkhanova ◽  
A.N. Khagleev ◽  
Denis B. Solovev

Mechanical, chemical and plasma treatment are the main kind of treatment of polytetrafluoroethylene (PTFE) films. Each method is different from each other by the adhesive force: the value of the wetting angle. Mechanical treatment allows different particles to permeate into the structure of the polymer. Chemical treatment creates new functional groups on the polymer surface, but this method is toxic and dangerous. Plasma treatment, in a glow discharge non-thermal plasma, is a more ecological and practical method. The experiment showed that the plasma treatment successfully increases the adhesion, this has been proven by infrared spectroscopy and scanning electron microscopy. According to the obtained data of the wetting angle, the regression equation was derived. A graphical model is constructed by regression equations allows you to determine the main processing factor and choose the optimal values of treatment.


2020 ◽  
pp. 095400832095706
Author(s):  
Jennifer Vinodhini ◽  
K Sudheendra ◽  
Meera Balachandran ◽  
Shantanu Bhowmik

This investigation highlights argon plasma treatment on Poly-aryl-ether-ketone (PAEK) and carbon fibre (CF) surface. The PAEK and CF surface is modified for 300 sec and the change in physiochemical and mechanical properties were investigated through Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Contact angle, Atomic Force Microscope (AFM) and Tensile Test. FTIR of surface modified PAEK revealed the stretching of C-H, C=C and C=O functional groups. A reversal phenomenon of increased surface energy was observed through dynamic contact angle study of CF and to further examine the surface energy effect, AFM analysis on CF was carried out revealing increased roughness with numerous micro dents formation. PAEK/CF composite samples were fabricated through compression moulding technique. The change in mechanical properties due to surface modification were analysed through Tensile testing on surface modified PAEK/CF sample and untreated PAEK/CF samples. The surface treated PAEK/CF showed increased tensile strength than untreated PAEK/CF. The argon plasma treatment helped in creating depth striations that lead to better interlocking of resin matrix with the reinforced CF. The fracture surface was examined through Filed Emission Scanning Electron Microscope (FE-SEM) wherein the Micrographs of the tensile tested samples indicated failure of composite due to fibre breakage.


RSC Advances ◽  
2016 ◽  
Vol 6 (62) ◽  
pp. 57701-57708 ◽  
Author(s):  
Chen Liu ◽  
Jiaping Lan ◽  
Fenglou Sun ◽  
Yuhua Zhang ◽  
Jinlin Li ◽  
...  

Glow discharge plasma would modify the surface hydrophilicity of support; the plasma treated catalysts showed much higher FTS activity.


2011 ◽  
Vol 25 (31) ◽  
pp. 4249-4252 ◽  
Author(s):  
JONG-HYOUNG KIM ◽  
SEOCK-SAM KIM ◽  
SI-GEUN CHOI ◽  
SEUNG-HUN LEE

Different treatment time and bias voltage with RF Ar plasma were used to improve tribological properties of NBR (Nitrile Butadiene Rubber). Chemical structure analyses of NBR by Attenuated Total Reflectance (ATR) were performed to clarify the functionality modification after the plasma treatment. In addition, wetting experiments were carried out by measuring the contact angle of distilled water drops on the NBR surface. ATR analysis revealed that the number of - C = O , - C - O , O - H functional groups increased after the argon plasma treatment. The functional groups led to changes in the contact angle from 100 to 50 degrees. The results showed that form-like nanostructures on the NBR was observed at the bias voltage of -400 V. The friction test showed that coefficient of friction after modified NBR in lubricated condition decreased from 0.25 to 0.15 with the increasing bias voltage due to the surface structure formations and better bonding with grease lubricant.


2012 ◽  
Vol 1395 ◽  
Author(s):  
Jason H. C. Yang ◽  
Kungen Teii

ABSTRACTNanocrystalline diamond (NCD) films are prepared from Ar-rich/N2/CH4 and Ar-rich/H2/CH4 mixtures by microwave plasma-enhanced chemical vapor deposition, and further treated by microwave hydrogen and oxygen plasma exposures separately to enhance the wetting property. The hydrogen plasma treatment has small effect on the surface roughness, while the oxygen plasma treatment forms fine protrusions on the film surface. Results show that the wettability of the hydrogen plasma treated NCD film is nearly constant or little improvement as the polar component of the apparent surface free energy is close to the as-deposit NCD film. In contrast, the wettability of the oxygen plasma treated NCD film is improved dramatically such that the contact angle is reduced from 92º and 4.7º to almost 0º for water and 1-bromonaphthalene, respectively, and the polar component increases significantly to 34 mJ/m2. The low contact angle suggests that the film is considerably a cell adhesive friendly surface, which is essential in maintaining multicellular structure, and thus making it a favorable wetting surface for biological and biomedical applications.


2010 ◽  
Vol 79 (1) ◽  
pp. 53-60 ◽  
Author(s):  
K. Navaneetha Pandiyaraj ◽  
V. Selvarajan ◽  
Young Ha Rhee ◽  
Hyoung Woo Kim ◽  
Matteo Pavese

2011 ◽  
Vol 328-330 ◽  
pp. 1413-1416
Author(s):  
Yan Zhang ◽  
Rui Juan Liu ◽  
Zhong Xuan Shang ◽  
Yin Ding Lv ◽  
Biao Gu

In this paper, polypropylene (PP) melt blown non-woven fabric is treated by atmospheric He, He/O2 or He/CO2 glow discharge plasma. The variation of the surface hidrophilicity of PP sample is experimentally investigated by the surface water contact angle. The results show that the surface water contact angle firstly has a sharp decline and then up to saturation. It is worth noting that the time the water contact angle is up to saturation greatly shortens when a spot of O2 or CO2 are added into the atmospheric He. In addition, when the PP samples are treated by the atmospheric glow discharge plasma, it is necessary of selecting a right applied voltage.


2017 ◽  
Vol 893 ◽  
pp. 318-322 ◽  
Author(s):  
Feng De Wang ◽  
Yong Lei Lv ◽  
Xu Wei ◽  
Guo Ling ◽  
Zhe Wen Han

Aramid fiber III has been treated by plasma treatment on different atmosphere gas to enhance the adhesive force between Aramid fiber III and epoxy matrix. The results of contact angle and SEM indicate that the obvious corrosion appear in the surface of aramid fiber III after plasma treatment. The yarn pull-out method was used to evaluate the effect of surface modification. The contact angle of original aramid fiber III is 65.9 o, and after treated the contact angle is declined to 62.2 o. The evaluation results show the tensile strength and NOL ILSS of treated Aramid fiber III/epoxy composite increased by about 10%. In summary, the effect of plasma treatment is obvious and has potential industry application.


Sign in / Sign up

Export Citation Format

Share Document