scholarly journals Contributions of Cytogenetics and Molecular Cytogenetics to the Diagnosis of Adipocytic Tumors

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Nishio

Over the last 20 years, a number of tumor-specific chromosomal translocations and associated fusion genes have been identified for mesenchymal neoplasms including adipocytic tumors. The addition of molecular cytogenetic techniques, especially fluorescence in situ hybridization (FISH), has further enhanced the sensitivity and accuracy of detecting nonrandom chromosomal translocations and/or other rearrangements in adipocytic tumors. Indeed, most resent molecular cytogenetic analysis has demonstrated a translocation t(11;16)(q13;p13) that produces aC11orf95-MKL2fusion gene in chondroid lipoma. Additionally, it is well recognized that supernumerary ring and/or giant rod chromosomes are characteristic for atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma, and amplification of 12q13–15 involving theMDM2,CDK4, andCPMgenes is shown by FISH in these tumors. Moreover, myxoid/round cell liposarcoma is characterized by a translocation t(12;16)(q13;p11) that fuses theDDIT3andFUSgenes. This paper provides an overview of the role of conventional cytogenetics and molecular cytogenetics in the diagnosis of adipocytic tumors.

2005 ◽  
Vol 19 (5) ◽  
pp. 1-36 ◽  
Author(s):  
Jane Bayani ◽  
Ajay Pandita ◽  
Jeremy A. Squire

Classic cytogenetics has evolved from black and white to technicolor images of chromosomes as a result of advances in fluorescence in situ hybridization (FISH) techniques, and is now called molecular cytogenetics. Improvements in the quality and diversity of probes suitable for FISH, coupled with advances in computerized image analysis, now permit the genome or tissue of interest to be analyzed in detail on a glass slide. It is evident that the growing list of options for cytogenetic analysis has improved the understanding of chromosomal changes in disease initiation, progression, and response to treatment. The contributions of classic and molecular cytogenetics to the study of brain tumors have provided scientists and clinicians alike with new avenues for investigation. In this review the authors summarize the contributions of molecular cytogenetics to the study of brain tumors, encompassing the findings of classic cytogenetics, interphase- and metaphase-based FISH studies, spectral karyotyping, and metaphase- and array-based comparative genomic hybridization. In addition, this review also details the role of molecular cytogenetic techniques in other aspects of understanding the pathogenesis of brain tumors, including xenograft, cancer stem cell, and telomere length studies.


Author(s):  
Muhammad Sanusi Yahaya ◽  
Mohd Shahrom Salisi ◽  
Nur Mahiza Md. Isa ◽  
Abd Wahid Haron ◽  
Innocent Damudu Peter

Cytogenetics is the study of chromosomes; their structure and properties, chromosome behavior during cell division, their influence on traits and factors which cause changes in chromosomes.  Veterinary cytogenetics is the application of cytogenetics to clinical problems that occur in animal production. It has been applied to understand problems such as infertility and its types, embryonic and fetal death, abnormality in sexual and somatic development and hybrid sterility and also prenatal sex determination and other forms of chromosomal abnormalities. These are achieved through conventional and banded karyotyping techniques and molecular cytogenetic techniques. Although conventional techniques are still useful and very widely applied, the nature of cytogenetics has gradually changed as a result of advances achieved in the molecular cytogenetic techniques for example fluorescent in situ hybridization and array-based techniques. These changes are evident in both molecular diagnostics and basic research. The combination of conventional and molecular cytogenetics has given rise to high resolution techniques which have enabled the study of fundamental questions regarding biological processes. It enables the study of inherited syndromes, the mechanisms of tumorigenesis at molecular level, genome organization and the determination of chromosome homologies between species. It allows the ease with which animals are selected in breeding programs and other important aspects of animal production. In this paper we discussed a number of techniques employed in cytogenetics and their methodologies, and recommend where future focus should be for the benefits of animal production.


2021 ◽  
Author(s):  
Yang Zhao ◽  
Honghong Deng ◽  
Yao Chen ◽  
Jihan Li ◽  
Silei Chen ◽  
...  

Abstract Background: Kiwifruit has long been regarded as ‘the king of fruits’ for its nutritional importance. However, the molecular cytogenetics of kiwifruit has long been hampered because of the large number of basic chromosome (x=29), the inherent small size and highly similar morphology of metaphase chromosomes. Fluorescence in situ hybridization (FISH) is an indispensable molecular cytogenetic technique widely used in many plant species. Herein, the effects of post-hybridization washing temperature on FISH, blocking DNA concentration on genomic in situ hybridization (GISH), extraction method on nuclei isolation and the incubation time on the DNA fiber quality in kiwifruit were evaluated.Results: The post-hybridization washing in 2×SSC solution for 3×5 min at 37 ˚C ensured high stringency and distinct specific FISH signals in kiwifruit somatic chromosomes. The use of 50× blocking DNA provided an efficient and reliable means of discriminating between chromosomes derived from in the hybrids of A. chinensis var. chinensis (2n=2x=58) × A. eriantha Benth (2n=2x=58), and inferring the participation of parental genitors. The chopping method established in the present study were found to be very suitable for preparation of leaf nuclei in kiwifruit. A high-quality linear DNA fiber was achieved by an incubation of 20 min. The physical size of 45S rDNA signals was approximately 35-40 μmm revealed by the highly reproducible fiber-FISH procedures established and optimized in this study.Conclusions: The molecular cytogenetic techniques (45S rDNA-FISH, GISH, and high-resolution fiber-FISH) for kiwifruit was for the first time established and optimized in the present study, which is the foundation for the future genomic and evolutionary studies.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Rafael Kretschmer ◽  
Ricardo José Gunski ◽  
Analía del Valle Garnero ◽  
Thales Renato Ochotorena de Freitas ◽  
Gustavo Akira Toma ◽  
...  

Although cytogenetics studies in cuckoos (Aves, Cuculiformes) have demonstrated an interesting karyotype variation, such as variations in the chromosome morphology and diploid number, their chromosome organization and evolution, and relation with other birds are poorly understood. Hence, we combined conventional and molecular cytogenetic approaches to investigate chromosome homologies between chicken and the smooth-billed ani (Crotophaga ani). Our results demonstrate extensive chromosome reorganization in C. ani, with interchromosomal rearrangements involving macro and microchromosomes. Intrachromosomal rearrangements were observed in some macrochromosomes, including the Z chromosome. The most evolutionary notable finding was a Robertsonian translocation between the microchromosome 17 and the Z chromosome, a rare event in birds. Additionally, the simple short repeats (SSRs) tested here were preferentially accumulated in the microchromosomes and in the Z and W chromosomes, showing no relationship with the constitutive heterochromatin regions, except in the W chromosome. Taken together, our results suggest that the avian sex chromosome is more complex than previously postulated and revealed the role of microchromosomes in the avian sex chromosome evolution, especially cuckoos.


2021 ◽  
pp. 1-11
Author(s):  
David S. da Silva ◽  
Heriberto F. da Silva Filho ◽  
Marcelo B. Cioffi ◽  
Edivaldo H.C. de Oliveira ◽  
Anderson J.B. Gomes

With 82 species currently described, the genus <i>Leptodactylus</i> is the most diverse and representative one in the family Leptodactylidae. Concerning chromosomal organization, this genus represents an interesting and underexplored group since data from molecular cytogenetics are incipient, and little is known about the organization and distribution of repetitive DNA elements in the karyotypes. In this sense, this study aimed at providing a comparative analysis in 4 <i>Leptodactylus</i> species (<i>L. macrosternum, L. pentadactylus, L. fuscus,</i> and <i>Leptodactylus</i> cf<i>. podicipinus</i>), combining conventional cytogenetics (Giemsa staining, C-banding, and AgNOR staining) and mapping of molecular markers (18S rDNA, telomeric and microsatellite probes), to investigate mechanisms underlying their karyotype differentiation process. The results showed that all species had karyotypes with 2n = 22 and FN = 44, except for <i>Leptodactylus</i> cf. <i>podicipinus</i> which presented FN = 36. The 18S rDNA was observed in pair 8 of all analyzed species (corresponding to pair 4 in <i>L. pentadactylus</i>), coinciding with the secondary constrictions and AgNOR staining. FISH with microsatellite DNA probes demonstrated species-specific patterns, as well as an association of these repetitive sequences with constitutive heterochromatin blocks and ribosomal DNA clusters, revealing the dynamics of microsatellites in the genome of the analyzed species. In summary, our data demonstrate an ongoing process of genomic divergence inside species with almost similar karyotype, driven most likely by a series of pericentric inversions, followed by differential accumulation of repetitive sequences.


2011 ◽  
Vol 28 (7) ◽  
pp. 621-626
Author(s):  
Monica Martinez-Garcia ◽  
Eva Ainse ◽  
Maria García-Hoyos ◽  
Ana Bustamante ◽  
Rocio Cardero ◽  
...  

2008 ◽  
Vol 180 (2) ◽  
pp. 153-157 ◽  
Author(s):  
Firoz Ahmad ◽  
Prajakta Kokate ◽  
Pratiksha Chheda ◽  
Rupa Dalvi ◽  
Bibhu Ranjan Das ◽  
...  

1993 ◽  
Vol 13 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
K M Sheehan ◽  
M R Lieber

V(D)J recombination in lymphoid cells is a site-specific process in which the activity of the recombinase enzyme is targeted to signal sequences flanking the coding elements of antigen receptor genes. The order of the steps in this reaction and their mechanistic interdependence are important to the understanding of how the reaction fails and thereby contributes to genomic instability in lymphoid cells. The products of the normal reaction are recombinant joints linking the coding sequences of the receptor genes and, reciprocally, the signal ends. Extrachromosomal substrate molecules were modified to inhibit the physical synapsis of the recombination signals. In this way, it has been possible to assess how inhibiting the formation of one joint affects the resolution efficiency of the other. Our results indicate that signal joint and coding joint formation are resolved independently in that they can be uncoupled from each other. We also find that signal synapsis is critical for the generation of recombinant products, which greatly restricts the degree of potential single-site cutting that might otherwise occur in the genome. Finally, inversion substrates manifest synaptic inhibition at much longer distances than do deletion substrates, suggesting that a parallel rather than an antiparallel alignment of the signals is required during synapsis. These observations are important for understanding the interaction of V(D)J signals with the recombinase. Moreover, the role of signal synapsis in regulating recombinase activity has significant implications for genome stability regarding the frequency of recombinase-mediated chromosomal translocations.


Sign in / Sign up

Export Citation Format

Share Document