scholarly journals Relationships among Contrasting Measurements of Microbial Dynamics in Pasture and Organic Farm Soils

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
S. L. Edenborn ◽  
A. J. Sexstone ◽  
Y. Sutanto ◽  
J. A. Chapman

Soil bacteria exhibit short-term variations in community structure, providing an indication of anthropogenic disturbances. In this study, microbial biomass carbon (MBC), potentially mineralizable nitrogen (PMN), community level physiological profiling (CLPP), and culture-dependent DGGE (CD DGGE) fingerprinting of the 16S rRNA gene were used to compare microbial communities in organic farm and pasture soils subjected to differing agronomic treatments. Correlation analyses revealed significant relationships between MBC, PMN, and data derived from microbial community analyses. All measures separated soil types but varied in their ability to distinguish among treatments within a soil type. Overall, MBC, PMN, and CLPP were most responsive to compost and manure amendments, while CD DGGE resolved differences in legume cropping and inorganic fertilization. The results support the hypothesis that culturable soil bacteria are a responsive fraction of the total microbial community, sensitive to agronomic perturbations and amenable to further studies aimed at linking community structure with soil functions.

2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Kärt Kanger ◽  
Nigel G H Guilford ◽  
HyunWoo Lee ◽  
Camilla L Nesbø ◽  
Jaak Truu ◽  
...  

ABSTRACT Solid organic waste is a significant source of antibiotic resistance genes (ARGs) and effective treatment strategies are urgently required to limit the spread of antimicrobial resistance. Here, we studied ARG diversity and abundance as well as the relationship between antibiotic resistome and microbial community structure within a lab-scale solid-state anaerobic digester treating a mixture of food waste, paper and cardboard. A total of 10 samples from digester feed and digestion products were collected for microbial community analysis including small subunit rRNA gene sequencing, total community metagenome sequencing and high-throughput quantitative PCR. We observed a significant shift in microbial community composition and a reduction in ARG diversity and abundance after 6 weeks of digestion. ARGs were identified in all samples with multidrug resistance being the most abundant ARG type. Thirty-two per cent of ARGs detected in digester feed were located on plasmids indicating potential for horizontal gene transfer. Using metagenomic assembly and binning, we detected potential bacterial hosts of ARGs in digester feed, which included Erwinia, Bifidobacteriaceae, Lactococcus lactis and Lactobacillus. Our results indicate that the process of sequential solid-state anaerobic digestion of food waste, paper and cardboard tested herein provides a significant reduction in the relative abundance of ARGs per 16S rRNA gene.


2019 ◽  
Vol 69 (13) ◽  
pp. 1531-1536 ◽  
Author(s):  
Lin Gao ◽  
Xin-min Liu ◽  
Yong-mei Du ◽  
Hao Zong ◽  
Guo-ming Shen

Abstract Purpose A reasonable cultivation pattern is beneficial to maintain soil microbial activity and optimize the structure of the soil microbial community. To determine the effect of tobacco−peanut (Nicotiana tabacum−Arachis hypogaea) relay intercropping on the microbial community structure in soil, we compared the effects of relay intercropping and continuous cropping on the soil bacteria community structure. Methods We collected soil samples from three different cropping patterns and analyzed microbial community structure and diversity using high-throughput sequencing technology. Result The number of operational taxonomic units (OTU) for bacterial species in the soil was maximal under continuous peanut cropping. At the phylum level, the main bacteria identified in soil were Proteobacteria, Actinobacteria, and Acidobacteria, which accounted for approximately 70% of the total. The proportions of Actinobacteria and Firmicutes increased, whereas the proportion of Proteobacteria decreased in soil with tobacco–peanut relay intercropping. Moreover, the proportions of Firmicutes and Proteobacteria among the soil bacteria further shifted over time with tobacco–peanut relay intercropping. At the genus level, the proportions of Bacillus and Lactococcus increased in soil with tobacco–peanut relay intercropping. Conclusion The community structure of soil bacteria differed considerably with tobacco–peanut relay intercropping from that detected under peanut continuous cropping, and the proportions of beneficial bacteria (the phyla Actinobacteria and Firmicutes, and the genera Bacillus and Lactococcus) increased while the proportion of potentially pathogenic bacteria (the genera Variibacter and Burkholderia) decreased. These results provide a basis for adopting tobacco–peanut relay intercropping to improve soil ecology and microorganisms, while making better use of limited cultivable land.


2021 ◽  
Vol 9 (9) ◽  
pp. 1803
Author(s):  
Bulbul Ahmed ◽  
Jean-Baptiste Floc’h ◽  
Zakaria Lahrach ◽  
Mohamed Hijri

Phytate represents an organic pool of phosphorus in soil that requires hydrolysis by phytase enzymes produced by microorganisms prior to its bioavailability by plants. We tested the ability of a microbial suspension made from an old growth maple forest’s undisturbed soil to mineralize phytate in a greenhouse trial on soybean plants inoculated or non-inoculated with the suspension. MiSeq Amplicon sequencing targeting bacterial 16S rRNA gene and fungal ITS was performed to assess microbial community changes following treatments. Our results showed that soybean nodulation and shoot dry weight biomass increased when phytate was applied to the nutrient-poor substrate mixture. Bacterial and fungal diversities of the root and rhizosphere biotopes were relatively resilient following inoculation by microbial suspension; however, bacterial community structure was significantly influenced. Interestingly, four arbuscular mycorrhizal fungi (AMF) were identified as indicator species, including Glomus sp., Claroideoglomus etunicatum, Funneliformis mosseae and an unidentified AMF taxon. We also observed that an ericoid mycorrhizal taxon Sebacina sp. and three Trichoderma spp. were among indicator species. Non-pathogenic Planctobacteria members highly dominated the bacterial community as core and hub taxa for over 80% of all bacterial datasets in root and rhizosphere biotopes. Overall, our study documented that inoculation with a microbial suspension and phytate amendment improved soybean plant growth.


2020 ◽  
Author(s):  
Bernard N. Kanoi ◽  
Maribet Gamboa ◽  
Doris Ngonzi ◽  
Thomas G. Egwang

AbstractMicrobial community structure changes are key in detecting and characterizing the impacts of anthropogenic activities on aquatic ecosystems. Here, we evaluated the effect of river pollution of industrial and urban sites on the microbial community composition and distribution in the Nakivubo wetland and its catchment areas in Lake Victoria basin, Uganda. Samples were collected from two industrial and one urban polluted sites and the microbial diversity was analyzed based on a 16S rRNA gene clone library. Differences in microbial diversity and community structure were observed at different sampling points. Bacteria associated with bioremediation were found in sites receiving industrial waste, while a low proportion of important human-pathogenic bacteria were seen in urban polluted sites. While Escherichia spp. was the most dominant genus of bacteria for all sites, three unique bacteria, Bacillus sp., Pseudomonas sp., Thermomonas sp., which have been reported to transform contaminants such as heavy metals and hydrocarbons (such as oils) by their metabolic pathways were also identified. Our results may serve as a basis for further studies assessing microbial community structure changes among polluted sites at Nakivubo Water Channel for management and monitoring. The diversity of natural microbial consortia could also be a rich bioprospecting resource for novel industrial enzymes, medicinal and bioactive compounds.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 507 ◽  
Author(s):  
Santisak Kitjanukit ◽  
Kyohei Takamatsu ◽  
Naoko Okibe

Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1%), Magnetospirillum sp. (3.2%), Geobacter sp. (0.3%), Bacillus sp. (0.18%), Pseudomonas sp. (0.03%), and non-metal-metabolizing bacteria (74.2%). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4% 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes.


2019 ◽  
Vol 20 (9) ◽  
pp. 2265 ◽  
Author(s):  
Liangxiang Dai ◽  
Guanchu Zhang ◽  
Zipeng Yu ◽  
Hong Ding ◽  
Yang Xu ◽  
...  

Background: Peanut (Arachis hypogaea L.), an important oilseed and food legume, is widely cultivated in the semi-arid tropics. Drought is the major stress in this region which limits productivity. Microbial communities in the rhizosphere are of special importance to stress tolerance. However, relatively little is known about the relationship between drought and microbial communities in peanuts. Method: In this study, deep sequencing of the V3-V4 region of the 16S rRNA gene was performed to characterize the microbial community structure of drought-treated and untreated peanuts. Results: Taxonomic analysis showed that Actinobacteria, Proteobacteria, Saccharibacteria, Chloroflexi, Acidobacteria and Cyanobacteria were the dominant phyla in the peanut rhizosphere. Comparisons of microbial community structure of peanuts revealed that the relative abundance of Actinobacteria and Acidobacteria dramatically increased in the seedling and podding stages in drought-treated soil, while that of Cyanobacteria and Gemmatimonadetes increased in the flowering stage in drought-treated rhizospheres. Metagenomic profiling indicated that sequences related to metabolism, signaling transduction, defense mechanism and basic vital activity were enriched in the drought-treated rhizosphere, which may have implications for plant survival and drought tolerance. Conclusion: This microbial communities study will form the foundation for future improvement of drought tolerance of peanuts via modification of the soil microbes.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 439-440
Author(s):  
Alvaro Morales ◽  
Leticia Campos ◽  
Jacquelyn Prestegaard ◽  
Kayla Alward ◽  
Connor Owens ◽  
...  

Abstract Understanding the composition and structure of the fecal microbial community may provide insight into bacterial adaptation to dietary changes in cattle. The aim of this study was to determine relationships among the fecal microbiome, residual feed intake (RFI) and residual net energy intake (REI) with diets varying in crude protein (CP). Four Holstein lactating cows (806 ± 38 kg of BW) were randomly assigned to one of two treatments (LOW: 13.2% and BASE:16.6% CP) in a crossover design (2 periods of 18 d each). Cows were 260 ± 62 days in milk (DIM) and averaged 26.5 ± 12.0 kg milk yield (MY). Diets were formulated to meet animal needs. Individual feed intake measured by a Calan Gate system was used to calculate daily dry matter intake (DMI). BW, MY and milk components were also measured daily. A linear mixed model with repeated measurements over time was used to evaluate diet effect on DMI, MY, RFI and REI in SAS. Individual fecal samples were collected at the end of each period and extracted DNA was subject to 16S rRNA gene deep amplicon sequencing. Operational Taxonomic Units (OTU) were obtained using ≥97% similarity (SILVA database) and microbial community structure was assessed using alpha and beta diversity measures. No significant differences in phenotypic variables evaluated were observed between treatments or periods. We identified 927 concordant OTU among all cows, with 505 novel OTU identified in BASE cows and 403 in LOW cows. Microbial community structure was similar between treatments and feed efficiency measures. One OTU class, Erysipelotrichi, increased in abundance (P = 0.014) in BASE compared to LOW treatment. Findings reflect previous literature in which Erysipelotrichi was associated with high energy or high fat diets. Although no differences were observed in the phenotypic measurements between treatments, metagenomics analyses indicated differences in specific fecal microbial abundance.


Author(s):  
Yong Li ◽  
Jiejie Zhang ◽  
Jianqiang Zhang ◽  
Wenlai Xu ◽  
Zishen Mou

To study the microbial community structure in sediments and its relation to eutrophication environment factors, the sediments and the overlying water of Sancha Lake were collected in the four seasons. MiSeq high-throughput sequencing was conducted for the V3–V4 hypervariable regions of the 16S rRNA gene and was used to analyze the microbial community structure in sediments. Pearson correlation and redundancy analysis (RDA) were conducted to determine the relation between microbial populations and eutrophic factors. The results demonstrated four main patterns: (1) in the 36 samples that were collected, the classification annotation suggested 64 phyla, 259 classes, 476 orders, 759 families, and 9325 OTUs; (2) The diversity indices were ordered according to their values as with summer > winter > autumn > spring; (3) The microbial populations in the four seasons belonged to two distinct characteristic groups; (4) pH, dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN) had significant effects on the community composition and structure, which further affected the dissolved total phosphorus (DTP) significantly. The present study demonstrates that the microbial communities in Sancha Lake sediments are highly diverse, their compositions and distributions are significantly different between spring and non-spring, and Actinobacteria and Cyanobacteria may be the key populations or indicator organisms for eutrophication.


Sign in / Sign up

Export Citation Format

Share Document