PSIX-6 Dietary crude protein modifies fecal microbial populations independent of feed efficiency status in dairy cows

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 439-440
Author(s):  
Alvaro Morales ◽  
Leticia Campos ◽  
Jacquelyn Prestegaard ◽  
Kayla Alward ◽  
Connor Owens ◽  
...  

Abstract Understanding the composition and structure of the fecal microbial community may provide insight into bacterial adaptation to dietary changes in cattle. The aim of this study was to determine relationships among the fecal microbiome, residual feed intake (RFI) and residual net energy intake (REI) with diets varying in crude protein (CP). Four Holstein lactating cows (806 ± 38 kg of BW) were randomly assigned to one of two treatments (LOW: 13.2% and BASE:16.6% CP) in a crossover design (2 periods of 18 d each). Cows were 260 ± 62 days in milk (DIM) and averaged 26.5 ± 12.0 kg milk yield (MY). Diets were formulated to meet animal needs. Individual feed intake measured by a Calan Gate system was used to calculate daily dry matter intake (DMI). BW, MY and milk components were also measured daily. A linear mixed model with repeated measurements over time was used to evaluate diet effect on DMI, MY, RFI and REI in SAS. Individual fecal samples were collected at the end of each period and extracted DNA was subject to 16S rRNA gene deep amplicon sequencing. Operational Taxonomic Units (OTU) were obtained using ≥97% similarity (SILVA database) and microbial community structure was assessed using alpha and beta diversity measures. No significant differences in phenotypic variables evaluated were observed between treatments or periods. We identified 927 concordant OTU among all cows, with 505 novel OTU identified in BASE cows and 403 in LOW cows. Microbial community structure was similar between treatments and feed efficiency measures. One OTU class, Erysipelotrichi, increased in abundance (P = 0.014) in BASE compared to LOW treatment. Findings reflect previous literature in which Erysipelotrichi was associated with high energy or high fat diets. Although no differences were observed in the phenotypic measurements between treatments, metagenomics analyses indicated differences in specific fecal microbial abundance.

2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Kärt Kanger ◽  
Nigel G H Guilford ◽  
HyunWoo Lee ◽  
Camilla L Nesbø ◽  
Jaak Truu ◽  
...  

ABSTRACT Solid organic waste is a significant source of antibiotic resistance genes (ARGs) and effective treatment strategies are urgently required to limit the spread of antimicrobial resistance. Here, we studied ARG diversity and abundance as well as the relationship between antibiotic resistome and microbial community structure within a lab-scale solid-state anaerobic digester treating a mixture of food waste, paper and cardboard. A total of 10 samples from digester feed and digestion products were collected for microbial community analysis including small subunit rRNA gene sequencing, total community metagenome sequencing and high-throughput quantitative PCR. We observed a significant shift in microbial community composition and a reduction in ARG diversity and abundance after 6 weeks of digestion. ARGs were identified in all samples with multidrug resistance being the most abundant ARG type. Thirty-two per cent of ARGs detected in digester feed were located on plasmids indicating potential for horizontal gene transfer. Using metagenomic assembly and binning, we detected potential bacterial hosts of ARGs in digester feed, which included Erwinia, Bifidobacteriaceae, Lactococcus lactis and Lactobacillus. Our results indicate that the process of sequential solid-state anaerobic digestion of food waste, paper and cardboard tested herein provides a significant reduction in the relative abundance of ARGs per 16S rRNA gene.


2020 ◽  
Author(s):  
Bernard N. Kanoi ◽  
Maribet Gamboa ◽  
Doris Ngonzi ◽  
Thomas G. Egwang

AbstractMicrobial community structure changes are key in detecting and characterizing the impacts of anthropogenic activities on aquatic ecosystems. Here, we evaluated the effect of river pollution of industrial and urban sites on the microbial community composition and distribution in the Nakivubo wetland and its catchment areas in Lake Victoria basin, Uganda. Samples were collected from two industrial and one urban polluted sites and the microbial diversity was analyzed based on a 16S rRNA gene clone library. Differences in microbial diversity and community structure were observed at different sampling points. Bacteria associated with bioremediation were found in sites receiving industrial waste, while a low proportion of important human-pathogenic bacteria were seen in urban polluted sites. While Escherichia spp. was the most dominant genus of bacteria for all sites, three unique bacteria, Bacillus sp., Pseudomonas sp., Thermomonas sp., which have been reported to transform contaminants such as heavy metals and hydrocarbons (such as oils) by their metabolic pathways were also identified. Our results may serve as a basis for further studies assessing microbial community structure changes among polluted sites at Nakivubo Water Channel for management and monitoring. The diversity of natural microbial consortia could also be a rich bioprospecting resource for novel industrial enzymes, medicinal and bioactive compounds.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 507 ◽  
Author(s):  
Santisak Kitjanukit ◽  
Kyohei Takamatsu ◽  
Naoko Okibe

Natural attenuation of Mn(II) was observed inside the metal refinery wastewater pipeline, accompanying dark brown-colored mineralization (mostly MnIVO2 with some MnIII2O3 and Fe2O3) on the inner pipe surface. The Mn-deposit hosted the bacterial community comprised of Hyphomicrobium sp. (22.1%), Magnetospirillum sp. (3.2%), Geobacter sp. (0.3%), Bacillus sp. (0.18%), Pseudomonas sp. (0.03%), and non-metal-metabolizing bacteria (74.2%). Culture enrichment of the Mn-deposit led to the isolation of a new heterotrophic Mn(II)-oxidizer Pseudomonas sp. SK3, with its closest relative Ps. resinovorans (with 98.4% 16S rRNA gene sequence identity), which was previously unknown as an Mn(II)-oxidizer. Oxidation of up to 100 mg/L Mn(II) was readily initiated and completed by isolate SK3, even in the presence of high contents of MgSO4 (a typical solute in metal refinery wastewaters). Additional Cu(II) facilitated Mn(II) oxidation by isolate SK3 (implying the involvement of multicopper oxidase enzyme), allowing a 2-fold greater Mn removal rate, compared to the well-studied Mn(II)-oxidizer Ps. putida MnB1. Poorly crystalline biogenic birnessite was formed by isolate SK3 via one-electron transfer oxidation, gradually raising the Mn AOS (average oxidation state) to 3.80 in 72 h. Together with its efficient in vitro Mn(II) oxidation behavior, a high Mn AOS level of 3.75 was observed with the pipeline Mn-deposit sample collected in situ. The overall results, including the microbial community structure analysis of the pipeline sample, suggest that the natural Mn(II) attenuation phenomenon was characterized by robust in situ activity of Mn(II) oxidizers (including strain SK3) for continuous generation of Mn(IV). This likely synergistically facilitated chemical Mn(II)/Mn(IV) synproportionation for effective Mn removal in the complex ecosystem established in this artificial pipeline structure. The potential utility of isolate SK3 is illustrated for further industrial application in metal refinery wastewater treatment processes.


2019 ◽  
Vol 20 (9) ◽  
pp. 2265 ◽  
Author(s):  
Liangxiang Dai ◽  
Guanchu Zhang ◽  
Zipeng Yu ◽  
Hong Ding ◽  
Yang Xu ◽  
...  

Background: Peanut (Arachis hypogaea L.), an important oilseed and food legume, is widely cultivated in the semi-arid tropics. Drought is the major stress in this region which limits productivity. Microbial communities in the rhizosphere are of special importance to stress tolerance. However, relatively little is known about the relationship between drought and microbial communities in peanuts. Method: In this study, deep sequencing of the V3-V4 region of the 16S rRNA gene was performed to characterize the microbial community structure of drought-treated and untreated peanuts. Results: Taxonomic analysis showed that Actinobacteria, Proteobacteria, Saccharibacteria, Chloroflexi, Acidobacteria and Cyanobacteria were the dominant phyla in the peanut rhizosphere. Comparisons of microbial community structure of peanuts revealed that the relative abundance of Actinobacteria and Acidobacteria dramatically increased in the seedling and podding stages in drought-treated soil, while that of Cyanobacteria and Gemmatimonadetes increased in the flowering stage in drought-treated rhizospheres. Metagenomic profiling indicated that sequences related to metabolism, signaling transduction, defense mechanism and basic vital activity were enriched in the drought-treated rhizosphere, which may have implications for plant survival and drought tolerance. Conclusion: This microbial communities study will form the foundation for future improvement of drought tolerance of peanuts via modification of the soil microbes.


Author(s):  
Yong Li ◽  
Jiejie Zhang ◽  
Jianqiang Zhang ◽  
Wenlai Xu ◽  
Zishen Mou

To study the microbial community structure in sediments and its relation to eutrophication environment factors, the sediments and the overlying water of Sancha Lake were collected in the four seasons. MiSeq high-throughput sequencing was conducted for the V3–V4 hypervariable regions of the 16S rRNA gene and was used to analyze the microbial community structure in sediments. Pearson correlation and redundancy analysis (RDA) were conducted to determine the relation between microbial populations and eutrophic factors. The results demonstrated four main patterns: (1) in the 36 samples that were collected, the classification annotation suggested 64 phyla, 259 classes, 476 orders, 759 families, and 9325 OTUs; (2) The diversity indices were ordered according to their values as with summer > winter > autumn > spring; (3) The microbial populations in the four seasons belonged to two distinct characteristic groups; (4) pH, dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN) had significant effects on the community composition and structure, which further affected the dissolved total phosphorus (DTP) significantly. The present study demonstrates that the microbial communities in Sancha Lake sediments are highly diverse, their compositions and distributions are significantly different between spring and non-spring, and Actinobacteria and Cyanobacteria may be the key populations or indicator organisms for eutrophication.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian Wang ◽  
Xuelan Chen ◽  
Huan Hu ◽  
Xiaoyuan Wei ◽  
Xiaofan Wang ◽  
...  

AbstractDental fluorosis is a very prevalent endemic disease. Although oral microbiome has been reported to correlate with different oral diseases, there appears to be an absence of research recognizing any relationship between the severity of dental fluorosis and the oral microbiome. To this end, we investigated the changes in oral microbial community structure and identified bacterial species associated with moderate and severe dental fluorosis. Salivary samples of 42 individuals, assigned into Healthy (N = 9), Mild (N = 14) and Moderate/Severe (M&S, N = 19), were investigated using the V4 region of 16S rRNA gene. The oral microbial community structure based on Bray Curtis and Weighted Unifrac were significantly changed in the M&S group compared with both of Healthy and Mild. As the predominant phyla, Firmicutes and Bacteroidetes showed variation in the relative abundance among groups. The Firmicutes/Bacteroidetes (F/B) ratio was significantly higher in the M&S group. LEfSe analysis was used to identify differentially represented taxa at the species level. Several genera such as Streptococcus mitis, Gemella parahaemolysans, Lactococcus lactis, and Fusobacterium nucleatum, were significantly more abundant in patients with moderate/severe dental fluorosis, while Prevotella melaninogenica and Schaalia odontolytica were enriched in the Healthy group. In conclusion, our study indicates oral microbiome shift in patients with moderate/severe dental fluorosis. We identified several differentially represented bacterial species enriched in moderate and severe fluorosis. Findings from this study suggests that the roles of these bacteria in oral health and related diseases warrant more consideration in patients with moderate and severe fluorosis.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Sahra J. Webb ◽  
Tia Rabsatt ◽  
Natalia Erazo ◽  
Jeff S. Bowman

Marine eelgrasses are influential to their surrounding environments through their many ecosystem services, ranging from the provisioning of food and shelter for marine life to serving as a natural defense against pollution and pathogenic bacteria. In the marine waters of San Diego, CA, USA, eelgrass beds comprised of Zostera spp. are an integral part of the coastal ecosystem. To evaluate the impact of eelgrass on bacterial and archaeal community structure we collected water samples in San Diego Bay and sequenced the 16S rRNA gene from paired eelgrass-present and eelgrass-absent sites. To test the hypothesis that microbial community structure is influenced by the presence of eelgrass we applied mixed effects models to these data and to bacterial abundance data derived by flow cytometry. This approach allowed us to identify specific microbial taxa that were differentially present at eelgrass-present and eelgrass-absent sites. Principal coordinate analysis organized the samples by location (inner vs. outer bay) along the first axis, where the first two axes accounted for a 90.8% of the variance in microbial community structure among the samples. Differentially present bacterial taxa included members of the order Rickettsiales, family Flavobacteriaceae, genus Tenacibaculum and members of the order Pseudomonadales. These findings constitute a unique look into the microbial composition of San Diego Bay and examine how eelgrasses contribute to marine ecosystem health, e.g., by supporting specific microbial communities and by filtering and trapping potentially harmful bacteria to the benefit of marine organisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Ma ◽  
Qin Ga ◽  
Ri-Li Ge ◽  
Shuang Ma

Hematological features are one of the best-known aspects of high-altitude adaptation in Tibetans. However, it is still unclear whether the intestinal microbiota is associated with the hematology profile. In this study, routine blood tests and 16S rRNA gene sequencing were used to investigate the differences in the intestinal microbiota and hematological parameters of native Tibetan herders and Han immigrants sampled at 3,900 m. The blood test results suggested that the platelet counts (PLTs) were significantly higher in native Tibetans than the Han immigrants. The feces of the native Tibetans had significantly greater microbial diversity (more different species: Simpson’s and Shannon’s indices) than that of the Han immigrants. The native Tibetans also had a different fecal microbial community structure than the Han immigrants. A Bray–Curtis distance-based redundancy analysis and envfit function test showed that body mass index (BMI) and PLT were significant explanatory variables that correlated with the fecal microbial community structure in native Tibetans. Spearman’s correlation analysis showed that Megamonas correlated positively with BMI, whereas Bifidobacterium correlated negatively with BMI. Alistipes and Parabacteroides correlated positively with the PLT. Succinivibrio correlated positively with SpO2. Intestinibacter correlated negatively with the red blood cell count, hemoglobin, and hematocrit (HCT). Romboutsia correlated negatively with HCT, whereas Phascolarctobacterium correlated positively with HCT. A functional analysis showed that the functional capacity of the gut microbial community in the native Tibetans was significantly related to carbohydrate metabolism. These findings suggest that the hematological profile is associated with the fecal microbial community, which may influence the high-altitude adaptation/acclimatization of Tibetans.


2019 ◽  
Author(s):  
Xiumei Tang ◽  
Saiyun Luo ◽  
Zhipeng Huang ◽  
Haining Wu ◽  
Jin Wang ◽  
...  

ABSTRACTCassava/peanut intercropping is a popular cultivation method in southern China and has the advantages of apparently increased yield and economic efficiency compared with monoculture, however, the ecological benefits of this method are poorly understood. This study aimed to investigate the effects of intercropping on the physicochemical properties and microbial community structures of soil. Field trials were performed to determine the effects of cassava/peanut intercropping on rhizospheric soil nutrient content, enzyme activities, microbial quantity and microbial community structure. The microbial community was characterized by 16S rRNA tag-based high-throughput sequencing on the Illumina MiSeq platform. Results showed that cassava/peanut intercropping could improve the physicochemical properties of rhizospheric soil by increasing the available nutrient content, pH, bacterial quantity, and some enzyme activities and by altering the microbial community structure. 16S rRNA gene sequencing demonstrated that the microbial community structure varied between the intercropping and monoculture systems. Nitrospirae, Verrucomicrobia and Gemmatimonadetes were more abundant in the intercropping system than in the monocultures. Redundancy analysis (RDA) revealed that the abundances ofDA101,PilimeliaandRamlibacterwere positively correlated with environmental parameters such as available nitrogen and pH, and these were dominant genera in the rhizospheric soil of the intercropped peanut plants.


2018 ◽  
Author(s):  
Lauren Gillies Campbell ◽  
J. Cameron Thrash ◽  
Nancy N. Rabalais ◽  
Olivia U. Mason

AbstractRich geochemical datasets generated over the past 30 years have provided fine-scale resolution on the northern Gulf of Mexico (nGOM) coastal hypoxic (≤ 2 mg of O2 L-1) zone. In contrast, little is known about microbial community structure and activity in the hypoxic zone despite the implication that microbial respiration is responsible for forming low dissolved oxygen (DO) conditioXSns. Here, we hypothesized that the extent of the hypoxic zone is a driver in determining microbial community structure, and in particular, the abundance of ammonia-oxidizing archaea (AOA). Samples collected across the shelf for two consecutive hypoxic seasons in July 2013 and 2014 were analyzed using 16S rRNA gene sequencing, oligotyping, microbial co-occurrence analysis and quantification of thaumarchaeal 16S rRNA and archaeal ammonia-monooxygenase (amoA) genes. In 2014 Thaumarchaeota were enriched and inversely correlated with DO while Cyanobacteria, Acidimicrobiia and Proteobacteria where more abundant in oxic samples compared to hypoxic. Oligotyping analysis of Nitrosopumilus 16S rRNA gene sequences revealed that one oligotype was significantly inversely correlated with dissolved oxygen (DO) in both years and that low DO concentrations, and the high Thaumarchaeota abundances, influenced microbial co-occurrence patterns. Taken together, the data demonstrated that the extent of hypoxic conditions could potentially influence patterns in microbial community structure, with two years of data revealing that the annual nGOM hypoxic zone is emerging as a low DO adapted AOA hotspot.


Sign in / Sign up

Export Citation Format

Share Document