scholarly journals Inflammation in Diabetic Nephropathy

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Andy K. H. Lim ◽  
Gregory H. Tesch

Diabetic nephropathy is the leading cause of end-stage kidney disease worldwide but current treatments remain suboptimal. This review examines the evidence for inflammation in the development and progression of diabetic nephropathy in both experimental and human diabetes, and provides an update on recent novel experimental approaches targeting inflammation and the lessons we have learned from these approaches. We highlight the important role of inflammatory cells in the kidney, particularly infiltrating macrophages, T-lymphocytes and the subpopulation of regulatory T cells. The possible link between immune deposition and diabetic nephropathy is explored, along with the recently described immune complexes of anti-oxidized low-density lipoproteins. We also briefly discuss some of the major inflammatory cytokines involved in the pathogenesis of diabetic nephropathy, including the role of adipokines. Lastly, we present the latest data on the pathogenic role of the stress-activated protein kinases in diabetic nephropathy, from studies on the p38 mitogen activated protein kinase and the c-Jun amino terminal kinase cell signalling pathways. The genetic and pharmacological approaches which reduce inflammation in diabetic nephropathy have not only enhanced our understanding of the pathophysiology of the disease but shown promise as potential therapeutic strategies.

Neurosurgery ◽  
2002 ◽  
Vol 51 (4) ◽  
pp. 997-1004 ◽  
Author(s):  
Yasushi Takagi ◽  
Masatsune Ishikawa ◽  
Kazuhiko Nozaki ◽  
Shinichi Yoshimura ◽  
Nobuo Hashimoto

Abstract OBJECTIVE Vascular remodeling via apoptotic mechanisms is an important factor in vascular diseases. c-Jun amino-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family and initiates apoptosis mainly via phosphorylation of the c-Jun transcription factor. We performed this study to clarify the roles of the JNK/c-Jun pathway and apoptosis in the pathogenesis of cerebral aneurysms. METHODS Cerebral aneurysms from 12 patients and control vessels from 5 patients were studied. We analyzed the expression of phosphorylated JNK and phosphorylated c-Jun in cerebral aneurysms by using immunohistochemical methods. RESULTS Immunoreactivity for phosphorylated JNK and phosphorylated c-Jun was increased in the vascular walls of the cerebral aneurysms studied. Immunoreactivity for single-stranded deoxyribonucleic acid (a marker of deoxyribonucleic acid damage) was also increased in aneurysmal tissue, compared with control vessels, and was colocalized with that for phosphorylated JNK and phosphorylated c-Jun in smooth muscle cells. CONCLUSION These observations may lead to better understanding of the role of the JNK/c-Jun pathway in the development of cerebral aneurysms and to new strategies for treatment.


2020 ◽  
Vol 21 (8) ◽  
pp. 2806 ◽  
Author(s):  
Priscila Calle ◽  
Georgina Hotter

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. The primary initiating mechanism in DN is hyperglycemia-induced vascular dysfunction, but its progression is due to different pathological mechanisms, including oxidative stress, inflammatory cells infiltration, inflammation and fibrosis. Macrophages (Mφ) accumulation in kidneys correlates strongly with serum creatinine, interstitial myofibroblast accumulation and interstitial fibrosis scores. However, whether or not Mφ polarization is involved in the progression of DN has not been adequately defined. The prevalence of the different phenotypes during the course of DN, the existence of hybrid phenotypes and the plasticity of these cells depending of the environment have led to inconclusive results. In the same sense the role of the different macrophage phenotype in fibrosis associated or not to DN warrants additional investigation into Mφ polarization and its role in fibrosis. Due to the association between fibrosis and the progressive decline of renal function in DN, and the role of the different phenotypes of Mφ in fibrosis, in this review we examine the role of macrophage phenotype control in DN and highlight the potential factors contributing to phenotype change and injury or repair in DN.


2016 ◽  
Vol 116 (08) ◽  
pp. 379-393 ◽  
Author(s):  
Irene Andrés-Blasco ◽  
Àngela Vinué ◽  
Andrea Herrero-Cervera ◽  
Sergio Martínez-Hervás ◽  
Laura Nuñez ◽  
...  

SummaryCoexistence of insulin resistance (IR) and metabolic syndrome (MetS) increases the risk of cardiovascular disease (CVD). Genetic studies in diabetes have linked Hepatic Lipase (HL) to an enhanced risk of CVD while others indicate a role of HL in inflammatory cells. Thus, we explored the role of HL on atherosclerosis and inflammation in a mouse model of MetS/IR, (apoE-/-Irs2+/- mice) and in patients with MetS and IR. HL-deficiency in apoE-/-Irs2+/- mice reduced atheroma size, plaque vulnerability, leukocyte infiltration and macrophage proliferation. Compared with apoE-/-Irs2+/-HL+/+ mice, MCP1, TNFa and IL6 plasma levels, pro-inflammatory Ly6Chi monocytes and activated(CD69+)-T lymphocytes were also decreased in apoE-/-Irs2+/-HL-/- mice. The LIGHT (Tumour necrosis factor ligand superfamily member 14, TNFSF14)/ Lymphotoxin β-Receptor(LTβ-R) pathway, which is involved in T-cell and macrophage activation, was diminished in plasma and in apoE-/-Irs2+/-HL-/- mouse atheromas. Treatment of apoE-/-Irs2+/-HL-/- mice with LIGHT increased the number of Ly6Chi-monocytes and lesion size. Acutely LIGHT-treated apoE-/- mice displayed enhanced proliferating Ly6Chi-monocytes and increased activation of the mitogen-activated protein kinase p38, suggesting that LIGHT/LTβ-R axis might promote atherogenesis by increasing proinflammatory monocytes and proliferation. Notably, MetS-IR subjects with increased atherosclerosis displayed up-regulation of the LIGHT/LTβ-R axis, enhanced inflammatory monocytes and augmented HL mRNA expression in circulating leukocytes. Thus, HL-deficiency decreases atherosclerosis in MetS/IR states by reducing inflammation and macrophage proliferation which are partly attributed to reduced LIGHT/LTβ-R pathway. These studies identify the LIGHT/LTβ-R axis as a main pathway in atherosclerosis and suggest that its inactivation might ameliorate inflammation and macrophage proliferation associated with atherosclerosis burden in MetS/IR.Supplementary Material to this article is available at www.thrombosis-online.com.


2021 ◽  
Vol 22 (3) ◽  
pp. 1110
Author(s):  
Gema González-Rubio ◽  
Ángela Sellers-Moya ◽  
Humberto Martín ◽  
María Molina

The Mitogen-Activated Protein Kinase (MAPK) Slt2 is central to signaling through the yeast Cell Wall Integrity (CWI) pathway. MAPKs are regulated by phosphorylation at both the threonine and tyrosine of the conserved TXY motif within the activation loop (T190/Y192 in Slt2). Since phosphorylation at both sites results in the full activation of MAPKs, signaling through MAPK pathways is monitored with antibodies that detect dually phosphorylated forms. However, most of these antibodies also recognize monophosphorylated species, whose relative abundance and functionality are diverse. By using different phosphospecific antibodies and phosphate-affinity (Phos-tag) analysis on distinct Slt2 mutants, we determined that Y192- and T190-monophosphorylated species coexist with biphosphorylated Slt2, although most of the Slt2 pool remains unphosphorylated following stress. Among the monophosphorylated forms, only T190 exhibited biological activity. Upon stimulation, Slt2 is first phosphorylated at Y192, mainly by the MAPKK Mkk1, and this phosphorylation is important for the subsequent T190 phosphorylation. Similarly, dephosphorylation of Slt2 by the Dual Specificity Phosphatase (DSP) Msg5 is ordered, with dephosphorylation of T190 depending on previous Y192 dephosphorylation. Whereas Y192 phosphorylation enhances the Slt2 catalytic activity, T190 is essential for this activity. The conserved T195 residue is also critical for Slt2 functionality. Mutations that abolish the activity of Slt2 result in a high increase in inactive Y192-monophosphorylated Slt2. The coexistence of different Slt2 phosphoforms with diverse biological significance highlights the importance of the precise detection of the Slt2 phosphorylation status.


2012 ◽  
Vol 40 (1) ◽  
pp. 251-256 ◽  
Author(s):  
Pamela A. Lochhead ◽  
Rebecca Gilley ◽  
Simon J. Cook

The MEK5 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 5]/ERK5 pathway is the least well studied MAPK signalling module. It has been proposed to play a role in the pathology of cancer. In the present paper, we review the role of the MEK5/ERK5 pathway using the ‘hallmarks of cancer’ as a framework and consider how this pathway is deregulated. As well as playing a key role in endothelial cell survival and tubular morphogenesis during tumour neovascularization, ERK5 is also emerging as a regulator of tumour cell invasion and migration. Several oncogenes can stimulate ERK5 activity, and protein levels are increased by a novel amplification at chromosome locus 17p11 and by down-regulation of the microRNAs miR-143 and miR-145. Together, these finding underscore the case for further investigation into understanding the role of ERK5 in cancer.


Sign in / Sign up

Export Citation Format

Share Document