scholarly journals Detection and Reduction of Middle-Frequency Resonance for Industrial Servo with Self-Tuning Lowpass Filter

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Wen-Yu Wang ◽  
An-Wen Shen

A novel method for middle frequency resonance detection and reduction is proposed for speed control in industrial servo systems. Defects of traditional resonance reduction method based on adaptive notch filter in middle frequency range are analyzed. And the main reason is summarized as the difference between the resonance frequency and the oscillation frequency. A self-tuning low-pass filter is introduced in the speed feedback path, whose corner frequency is determined by FFT results and several self-tuning rules. With the proposed method the effective range of the adaptive filter is extended across the middle frequency range. Simulation and Experiment results show that the frequency detection is accurate and resonances during the speed steady states and dynamics are successfully reduced.

2020 ◽  
Author(s):  
Shenghuan Zhang ◽  
Brendan McCane ◽  
Phoebe S-H Neo ◽  
Neil McNaughton

ABSTRACTEEG signals are often contaminated with artefacts, particularly with mains power from electrical equipment. Low-pass filtering and notch filtering can lose valuable data. Here we describe a novel mains power noise removal method based on the fact that mains power noise is a sine wave component with an essentially fixed frequency and the same phase across all channels. This removes the blink component, leaving uncontaminated EEG largely unchanged. Blink removal had a success rate of >99.9% recovered variance of the original EEG when removing synthesised mains power components. We compared this method with two other popular mains power noise removal methods. Our method was better than Cleanline which is an ICA based method and multiple PLI which is an adaptive notch filter based method. With the higher recovery, our method shows clear advantages over Cleanline and multiple PLI for removing mains power noise. From the aspect of data loss, it is obviously better than low-pass filter and normal notch filter.


2014 ◽  
Vol 986-987 ◽  
pp. 1169-1172
Author(s):  
Ping Wang ◽  
Meng Meng Cai

The LCL filter is widely applied as interface between grid-connected inverter and grid due to the preferable high frequency attenuation characteristic. Under the condition of weak grid, impedance value of grid model cannot be ignored, the existence of grid impedance results in different LCL resonant frequencies, which will arise challenges of traditional active damping control. Based on the analysis of band pass filter using active damping control strategy, an adaptive active damping control is proposed in this paper by introducing the application of active notch filter, which can adjust the position of negative resonance point adaptively so as to manage sudden grid changes. Theoretical analysis and simulation results presented on the platform of grid-connected PV inverter system indicate the effectiveness and adaptability of this active damping strategy.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450018 ◽  
Author(s):  
A. F. Qasrawi ◽  
Faten M. Bzour ◽  
Eman O. Nazzal ◽  
A. Mergen

In this work, the electrical properties of samarium-doped bismuth niobium zinc oxide ( Sm -doped BZN ) pyrochlore ceramics are investigated by means of temperature dependent electrical conductivity and capacitance spectroscopy in the frequency range of 0–3 GHz. It was observed that the novel dielectric Sm - BZN ceramic exhibits a temperature and electric field dependent dielectric breakdown. When measured at 300 K, the breakdown electric field is 1.12 kV/cm and when heated the breakdown temperature is ~ 420 K. The pyrochlore is thermally active above 440 K with conductivity activation energy of 1.37 eV. In addition, the room temperature capacitance spectra reflected a resonance–antiresonance switching property at 53 MHz when subjected to an AC signal of low power of 5 dBm. Furthermore, when the Sm - BZN ceramics are used as microwave cavity and tested in the frequency range of 1.0–3.0 GHz, the cavity behaves as low pass filter with wide tunability up to a frequency of 1.91 GHz. At this frequency it behaves as a band rejection filter that blocks waves of 1.91 GHz and 2.57 GHz frequencies. These properties of the Sm -doped BZN are promising as they indicate the usability of the ceramics in digital electronic circuits as resonant microwave cavities suitable for the production of low pass/rejection band filters.


2020 ◽  
Vol 13 (2) ◽  
pp. 107-114
Author(s):  
Muhammad Syifaul Linnas ◽  
Sumber Sumber ◽  
Prastawa Assalim Tetraputra

    Electrocardiograph (ECG) secara rutin dilakukan oleh operator terampil yang terbiasa dengan penempatan masing-masing elektroda pada pasien. Posisi elektroda yang salah dapat menyebabkan kesalahan kritis dalam diagnosis dan perawatan penyakit jantung. Tujuan dari penelitian ini adalah mendesain sebuah Portable Electrocardiograph dengan Sadapan Pada Telapak Tangan dan Kaki. Kontribusi dari penelitian ini adalah  memudahkan orang awam dalam bidang kesehatan dalam hal penggunaan Electrocardiograph. Penelitian ini juga bertujuan  mendesain Electrocardiograph yang cukup terjangkau bagi puskesmas/pusat-pusat pelayanan medis di daerah. Agar desain ini dapat memudahkan dalam metode penggunaan alat, maka dibuatlah alat Electrocardiograph (ECG) dengan elektroda pad yang akan diletakkan pada telapak tangan dan telapak kaki yang telah di berikan tanda pada elektroda tersebut. Electrocardiograph (ECG) menggunakan desain High Pass Filter (Pasif 20dB ditambah Non Inverting Amplifier, Low Pass Filter (LPF) 40dB, dan notch filter yang akan ditampilkan pada layar monitor Personal Computer (PC). Dari hasil sadapan beberapa responden, terlihat hasil tampilan yang menyerupai/mendekati sinyal Electrocardiograph (ECG) sebenarnya. Kekurangan dari modul ini jika tidak adanya grounding yang baik dari power suply maka akan terjadi noise pada hasil sinyal yang akan ditampilkan. Hasil penelitian ini dapat di implementasikan pada Electrocardiograph (ECG) konvensional untuk meningkatkan kemudahan dalam hal penggunaan alat.    


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5014
Author(s):  
Fankun Meng ◽  
Zhengguo Li ◽  
Xiaoli Sun ◽  
Xiaoqin Wen ◽  
Michael Negnevitsky ◽  
...  

Repetitive operations have been extensively used in the inverter compressor refrigeration industry. The approximately periodic disturbance caused by repetitive operations must be compensated to realize stable and high-efficiency operation. In this paper, a periodic disturbance observer (PDOB) is proposed to tackle the speed fluctuation of an inverter compressor in the low-frequency range. Periodic disturbance, consisting of a fundamental wave and corresponding harmonics, can thus be estimated and compensated; in addition, sensitivity and complementary sensitivity can reach a compromise through the use of a certain parameter. Aiming at a different operation environment, an adaptive notch filter based on the Steiglitz–McBride method is employed to estimate the fundamental frequency of periodic disturbance. Finally, the feasibility of our approach is verified by MATLAB simulation, and experiments are implemented to illustrate that speed fluctuation can be more effectively attenuated by the proposed method in comparison with general DOB.


Author(s):  
A. G. Zinovyev ◽  
I. A. Shestakov

Harmonic filters of short-wave transmitters, tunable in the frequency range using discrete variable capacitors, are presented. A comparison of a harmonic filter based on tunable LC low-pass filters with inductive coupling between the filter inductors is carried out with a similar harmonic filter, each LC low-pass filter of which con-tains an additional capacitive coupling capacitor connected between the two filter links and significantly changed the parameters of the harmonic filter.


1989 ◽  
Vol 256 (1) ◽  
pp. H142-H152 ◽  
Author(s):  
R. D. Berger ◽  
J. P. Saul ◽  
R. J. Cohen

We present a useful technique for analyzing the various functional components that comprise the cardiovascular control network. Our approach entails the imposition of a signal with broad frequency content as an input excitation and the computation of a system transfer function using spectral estimation techniques. In this paper, we outline the analytical methods involved and demonstrate the utility of our approach in studying the dynamic behavior of the canine cardiac pacemaker. In particular, we applied frequency-modulated pulse trains to either the right vagus or the cardiac sympathetic nerve and computed transfer functions between nerve stimulation rate and the resulting atrial rate. We found that the sinoatrial node (and associated automatic tissue) responds as a low-pass filter to fluctuations in either sympathetic or parasympathetic tone. For sympathetic fluctuations, however, the filter has a much lower corner frequency than for vagal fluctuations and is coupled with a roughly 1.7-s pure delay. We further found that the filter characteristics, including the location of the corner frequency and rate of roll-off, depend significantly on the mean level of sympathetic or vagal tone imposed.


2011 ◽  
Vol 291-294 ◽  
pp. 2620-2623
Author(s):  
Jun Min Zhang

In this paper, according to the base-adaptive detecting method of harmonic current for APF, there had contradiction between detecting accuracy and dynamic response. It had been proved that this system is a symmetrical notch-filter. Based on analysis above, this paper is proposed improved-adaptive detecting method. A low-pass filter has been in base-adaptive system. We first discussed the stability of improved system. Then theoretical analysis and simulation test shows the bandwidth had been reduced nearby reference frequency. Simulation had showed that the dynamic performance was in a period and the harmonic distortion rate was no more than 1.7%.


2021 ◽  
Vol 88 (s1) ◽  
pp. s77-s82
Author(s):  
Senan Alraho ◽  
Qummar Zaman ◽  
Andreas König

Abstract This paper picks up the need for a wide range programmable corner frequency for anti-aliasing and antiimaging filters in on-chip impedance spectroscopy and sensor signal readout circuitry with self-X properties (selfdiagnosing/healing) for industry 4.0 applications. A fourthorder wide tunable range MOSFET-C low pass filter is designed by using XFAB 0.35 μm CMOS technology and Cadence design tools. The proposed circuit is based on fully differential Sallen-Key architecture with Butterworth approximation. It covers a frequency range from 30 Hz up to 7 MHz. Tunability is achieved using a potentially high resistance and linearized configurable MOS resistor to control the filter pole frequency. The configurable elements in the circuit serve as tuning knobs to be controlled by machine learning. The physical design area is 0.39mm2.


Sign in / Sign up

Export Citation Format

Share Document