scholarly journals Wide Programmable Range Fourth-Order, Fully-Differential Sallen-Key MOSFET-C LPF for Impedance Spectroscopy Measurements and Self-X Sensory Electronics in Industry 4.0

2021 ◽  
Vol 88 (s1) ◽  
pp. s77-s82
Author(s):  
Senan Alraho ◽  
Qummar Zaman ◽  
Andreas König

Abstract This paper picks up the need for a wide range programmable corner frequency for anti-aliasing and antiimaging filters in on-chip impedance spectroscopy and sensor signal readout circuitry with self-X properties (selfdiagnosing/healing) for industry 4.0 applications. A fourthorder wide tunable range MOSFET-C low pass filter is designed by using XFAB 0.35 μm CMOS technology and Cadence design tools. The proposed circuit is based on fully differential Sallen-Key architecture with Butterworth approximation. It covers a frequency range from 30 Hz up to 7 MHz. Tunability is achieved using a potentially high resistance and linearized configurable MOS resistor to control the filter pole frequency. The configurable elements in the circuit serve as tuning knobs to be controlled by machine learning. The physical design area is 0.39mm2.

2009 ◽  
Vol 18 (07) ◽  
pp. 1287-1308 ◽  
Author(s):  
EMAN A. SOLIMAN ◽  
SOLIMAN A. MAHMOUD

This paper presents different novel CMOS realizations for the differential difference operational floating amplifier (DDOFA). The DDOFA was first introduced in Ref. 1 and was used to realize different analog circuits like integrators, filters and variable gain amplifiers. New CMOS realizations for the DDOFA are introduced in this literature. Furthermore the DDOFA is modified to realize a fully differential current conveyor (FDCC). Novel CMOS realizations of the FDCC are presented. The FDCC is used to realize second-order band pass–low-pass filter. Performance comparisons between the different realizations of the DDOFA and FDCC are given in this literature. PSPICE simulations of the overall proposed circuits are given using 0.25 μm CMOS Technology from TMSC MOSIS model and dual supply voltages of ±1.5 V.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 204 ◽  
Author(s):  
Changchun Zhang ◽  
Long Shang ◽  
Yongkai Wang ◽  
Lu Tang

This paper presents a low-pass filter (LPF) for an ultra-high frequency (UHF) radio frequency identification (RFID) reader transmitter in standard SMIC 0.18 μm CMOS technology. The active-RC topology and Butterworth approximation function are employed mainly for high linearity and high flatness respectively. Two cascaded fully-differential Tow-Thomas biquads are chosen for low sensitivity to process errors and strong resistance to the imperfection of the involved two-stage fully-differential operational amplifiers. Besides, the LPF is programmable in order to adapt to the multiple data rate standards. Measurement results show that the LPF has the programmable bandwidths of 605/870/1020/1330/1530/2150 kHz, the optimum input 1dB compression point of −7.81 dBm, and the attenuation of 50 dB at 10 times cutoff frequency, with the overall power consumption of 12.6 mW from a single supply voltage of 1.8 V. The silicon area of the LPF core is 0.17 mm2.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2931
Author(s):  
Waldemar Jendernalik ◽  
Jacek Jakusz ◽  
Grzegorz Blakiewicz

Buffer-based CMOS filters are maximally simplified circuits containing as few transistors as possible. Their applications, among others, include nano to micro watt biomedical sensors that process physiological signals of frequencies from 0.01 Hz to about 3 kHz. The order of a buffer-based filter is not greater than two. Hence, to obtain higher-order filters, a cascade of second-order filters is constructed. In this paper, a more general method for buffer-based filter synthesis is developed and presented. The method uses RLC ladder prototypes to obtain filters of arbitrary orders. In addition, a set of novel circuit solutions with ultra-low voltage and power are proposed. The introduced circuits were synthesized and simulated using 180-nm CMOS technology of X-FAB. One of the designed circuits is a fourth-order, low-pass filter that features: 100-Hz passband, 0.4-V supply voltage, power consumption of less than 5 nW, and dynamic range above 60 dB. Moreover, the total capacitance of the proposed filter (31 pF) is 25% lower compared to the structure synthesized using a conventional cascade method (40 pF).


2019 ◽  
Vol 29 (07) ◽  
pp. 2050109
Author(s):  
Yan Li ◽  
Yong Liang Li

A novel capacitance multiplier is proposed to implement an ultra-low-frequency filter for physiological signal processing in biomedical applications. With the proposed multiplier, a simple first-order low-pass filter achieves a [Formula: see text]3-dB frequency of 33.4[Formula: see text]μHz with a 1-pF capacitance and a 20[Formula: see text]k[Formula: see text] resistance. This corresponds to a multiplication factor of as large as [Formula: see text]. By changing the controlling terminal, the [Formula: see text]3-dB frequency can be tuned in a wide range of 33.4[Formula: see text]μHz–6.3[Formula: see text]kHz.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1547
Author(s):  
Xiangyu Chen ◽  
Yasuhiro Takahashi

In this paper, a transimpedance amplifier (TIA) based on floating active inductors (FAI) is presented. Compared with conventional TIAs, the proposed TIA has the advantages of a wider bandwidth, lower power dissipation, and smaller chip area. The schematics and characteristics of the FAI circuit are explained. Moreover, the proposed TIA employs the combination of capacitive degeneration, the broadband matching network, and the regulated cascode input stage to enhance the bandwidth and gain. This turns the TIA design into a fifth-order low pass filter with Butterworth response. The TIA is implemented using 0.18 μ m Rohm CMOS technology and consumes only 10.7 mW with a supply voltage of 1.8 V. When used with a 150 fF photodiode capacitance, it exhibits the following characteristics: gain of 41 dB Ω and −3 dB frequency of 10 GHz. This TIA occupies an area of 180 μ m × 118 μ m.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Wen-Yu Wang ◽  
An-Wen Shen

A novel method for middle frequency resonance detection and reduction is proposed for speed control in industrial servo systems. Defects of traditional resonance reduction method based on adaptive notch filter in middle frequency range are analyzed. And the main reason is summarized as the difference between the resonance frequency and the oscillation frequency. A self-tuning low-pass filter is introduced in the speed feedback path, whose corner frequency is determined by FFT results and several self-tuning rules. With the proposed method the effective range of the adaptive filter is extended across the middle frequency range. Simulation and Experiment results show that the frequency detection is accurate and resonances during the speed steady states and dynamics are successfully reduced.


2013 ◽  
Vol 23 (11) ◽  
pp. 1350189 ◽  
Author(s):  
R. JOTHIMURUGAN ◽  
K. THAMILMARAN ◽  
S. RAJASEKAR ◽  
M. A. F. SANJUÁN

We consider a single Chua's circuit and a system of a unidirectionally coupled n-Chua's circuits driven by a biharmonic signal with two widely different frequencies ω and Ω, where Ω ≫ ω. We show experimental evidence for vibrational resonance in the single Chua's circuit and undamped signal propagation of a low-frequency signal in the system of n-coupled Chua's circuits where only the first circuit is driven by the biharmonic signal. In the single circuit, we illustrate the mechanism of vibrational resonance and the influence of the biharmonic signal parameters on the resonance. In the n(=75)-coupled Chua's circuits enhanced propagation of low-frequency signal is found to occur for a wide range of values of the amplitude of the high-frequency input signal and coupling parameter. The response amplitude of the ith circuit increases with i and attains a saturation. Moreover, the unidirectional coupling is found to act as a low-pass filter.


2016 ◽  
Vol 33 (10) ◽  
pp. 2065-2078 ◽  
Author(s):  
Yasutaka Goto ◽  
Ichiro Yasuda ◽  
Maki Nagasawa

AbstractEstimation of turbulence intensity with a fast-response thermistor is examined by comparing the energy dissipation rate from a Fastip Probe, model 07 (FP07), thermistor with from a shear probe, both of which are attached to a free-fall microstructure profiler with the fall rate of 0.6–0.7 m s−1. Temperature gradient spectra corrected with previously introduced frequency response functions represented by a single-pole low-pass filter yields with a bias that strongly depends on turbulence intensity. Meanwhile, the correction with the form of a double-pole low-pass filter derives less bias than of single-pole low-pass filter. The rate is compatible with when the double-pole correction with the time constant of 3 × 10−3 s is applied, and 68% of data are within a factor of 2.8 of in the wide range of = 10−10–3 × 10−7 W kg−1. The rate is still compatible with even in the anisotropy range, where the buoyancy Reynolds number is 20–100. Turbulence estimation from the fast-response thermistor is thus confirmed to be valid in this range by applying the appropriate correction to temperature gradient spectra. Measurements with fast-response thermistors, which have not been common because of their poor frequency response, are less sensitive to the vibration of profilers than those with shear probes. Hence, measurements could be available when a fast-response thermistor is attached to a CTD frame or a float, which extends the possibility of obtaining much more turbulence data in deep and wide oceans.


Sign in / Sign up

Export Citation Format

Share Document