scholarly journals Effect ofEx VivoCulture Conditions on Immunosuppression by Human Mesenchymal Stem Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Myoung Woo Lee ◽  
Dae Seong Kim ◽  
Somi Ryu ◽  
In Keun Jang ◽  
Hye Jin Kim ◽  
...  

A microarray analysis was performed to investigate whetherex vivoculture conditions affect the characteristics of MSCs. Gene expression profiles were mainly influenced by the level of cell confluence rather than initial seeding density. The analysis showed that 276 genes were upregulated and 230 genes downregulated in MSCs harvested at~90% versus~50% confluence (P<0.05,FC>2). The genes that were highly expressed in MSCs largely corresponded to chemotaxis, inflammation, and immune responses, indicating direct or indirect involvement in immunomodulatory functions. Specifically, PTGES and ULBP1 were up-regulated in MSCs harvested at high density. Treatment of MSCs withPTGESorULBP1siRNA reversed their inhibition of T-cell proliferationin vitro. The culture conditions such as cell confluence at harvest seem to be important for gene expression profile of MSCs; therefore, the results of this study may provide useful guidelines for the harvest of MSCs that can appropriately suppress the immune response.

Reproduction ◽  
2011 ◽  
Vol 142 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Elizabeth M Parrish ◽  
Anaar Siletz ◽  
Min Xu ◽  
Teresa K Woodruff ◽  
Lonnie D Shea

Ovarian follicle maturation results from a complex interplay of endocrine, paracrine, and direct cell–cell interactions. This study compared the dynamic expression of key developmental genes during folliculogenesis in vivo and during in vitro culture in a 3D alginate hydrogel system. Candidate gene expression profiles were measured within mouse two-layered secondary follicles, multi-layered secondary follicles, and cumulus–oocyte complexes (COCs). The expression of 20 genes involved in endocrine communication, growth signaling, and oocyte development was investigated by real-time PCR. Gene product levels were compared between i) follicles of similar stage and ii) COCs derived either in vivo or by in vitro culture. For follicles cultured for 4 days, the expression pattern and the expression level of 12 genes were the same in vivo and in vitro. Some endocrine (cytochrome P450, family 19, subfamily A, polypeptide 1 (Cyp19a1) and inhibin βA subunit (Inhba)) and growth-related genes (bone morphogenetic protein 15 (Bmp15), kit ligand (Kitl), and transforming growth factor β receptor 2 (Tgfbr2)) were downregulated relative to in vivo follicles. For COCs obtained from cultured follicles, endocrine-related genes (inhibin α-subunit (Inha) and Inhba) had increased expression relative to in vivo counterparts, whereas growth-related genes (Bmp15, growth differentiation factor 9, and kit oncogene (Kit)) and zona pellucida genes were decreased. However, most of the oocyte-specific genes (e.g. factor in the germline α (Figla), jagged 1 (Jag1), and Nlrp5 (Mater)) were expressed in vitro at the same level and with the same pattern as in vivo-derived follicles. These studies establish the similarities and differences between in vivo and in vitro cultured follicles, guiding the creation of environments that maximize follicle development and oocyte quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. e66-e73 ◽  
Author(s):  
Chih-Wen Ni ◽  
Haiwei Qiu ◽  
Amir Rezvan ◽  
Kihwan Kwon ◽  
Douglas Nam ◽  
...  

Abstract Recently, we showed that disturbed flow caused by a partial ligation of mouse carotid artery rapidly induces atherosclerosis. Here, we identified mechanosensitive genes in vivo through a genome-wide microarray study using mouse endothelial RNAs isolated from the flow-disturbed left and the undisturbed right common carotid artery. We found 62 and 523 genes that changed significantly by 12 hours and 48 hours after ligation, respectively. The results were validated by quantitative polymerase chain reaction for 44 of 46 tested genes. This array study discovered numerous novel mechanosensitive genes, including Lmo4, klk10, and dhh, while confirming well-known ones, such as Klf2, eNOS, and BMP4. Four genes were further validated for protein, including LMO4, which showed higher expression in mouse aortic arch and in human coronary endothelium in an asymmetric pattern. Comparison of in vivo, ex vivo, and in vitro endothelial gene expression profiles indicates that numerous in vivo mechanosensitive genes appear to be lost or dysregulated during culture. Gene ontology analyses show that disturbed flow regulates genes involved in cell proliferation and morphology by 12 hours, followed by inflammatory and immune responses by 48 hours. Determining the functional importance of these novel mechanosensitive genes may provide important insights into understanding vascular biology and atherosclerosis.


2005 ◽  
Vol 288 (6) ◽  
pp. C1211-C1221 ◽  
Author(s):  
Steven J. Pardo ◽  
Mamta J. Patel ◽  
Michelle C. Sykes ◽  
Manu O. Platt ◽  
Nolan L. Boyd ◽  
...  

Exposure to microgravity causes bone loss in humans, and the underlying mechanism is thought to be at least partially due to a decrease in bone formation by osteoblasts. In the present study, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 preosteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using the RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating a bone loss response that occurs in real microgravity conditions without altering cell proliferation and shape. Next, we performed DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined using the microarray, 88 were downregulated and 52 were upregulated significantly more than twofold using simulated microgravity compared with the static 1-g condition. We then verified the microarray data for some of the genes relevant in bone biology using real-time PCR assays and immunoblotting. We confirmed that microgravity downregulated levels of alkaline phosphatase, runt-related transcription factor 2, osteomodulin, and parathyroid hormone receptor 1 mRNA; upregulated cathepsin K mRNA; and did not significantly affect bone morphogenic protein 4 and cystatin C protein levels. The identification of gravisensitive genes provides useful insight that may lead to further hypotheses regarding their roles in not only microgravity-induced bone loss but also the general patient population with similar pathological conditions, such as osteoporosis.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jose Gomez ◽  
Eric Sum ◽  
Anna Keyte ◽  
Conrad Hodgkinson ◽  
Mary Hutson ◽  
...  

Introduction: The renin-angiotensin system (RAS) is an important component of blood pressure regulation in mammals. Renin catalyzes the rate limiting step of RAS, is produced and stored by Juxtaglomerular (JG) cells in the kidney. However, the transcriptional mechanisms that govern the specification of renin expressing cells under normal or pathophysiological conditions remain poorly understood. During blood pressure changes the number of adult renal cells expressing renin increase through a process termed JG recruitment. We found that this process involves differentiation mesenchymal stromal-like cells (MSC) to renin expressing cells. Our aim in this study was to determine new regulators of renin cell fate during kidney development and JG recruitment. Methods: Gene expression profiles of MSC and JG cells were performed with Affymetrix Mouse 430 2.0 array. In vitro assays were performed in adult renal MSCs isolated from C57BL6 Ren1c YFP mice. Renin expression in vitro was induced by treatment with IBMX and Forskolin. MSC were transduced with lentivirus carrying vectors for Sox6, Sox6 shRNA or controls. Ex vivo analysis was performed in embryonic kidneys (14.5 dpc) isolated and transduced with Sox6 or scrambled shRNA, kidneys were then cultured for 4 days and the expression of Sox6 and Renin analyzed by IHC. Results: Data showed that the transcription factor Sox6 is expressed in renin producing cells in the developing kidney (n=4) and in the adult kidney after stimulation that promotes JG recruitment (n=3). Overexpression of Sox6 (n=3, P<0.05) enhanced differentiation of renal MSCs to renin producing cells in vitro , and Sox6 knockdown reduced differentiation of renal MSC to renin producing cells in vitro (6-fold, n=4, P<0.01). Furthermore, knockdown of Sox6 in an ex vivo model of kidney development resulted in a 5-fold reduction in renin expressing cells (n=4, P<0.05). Conclusion: These results support a novel role for Sox6 in the development of renin expressing cells. This may have implications for renal development and physiology, opening new possibilities of addressing questions regarding both developmental and physiological regulation of renin.


Author(s):  
Ana M. Sotoca ◽  
Michael Weber ◽  
Everardus J. J. van Zoelen

Human mesenchymal stem cells have a high potential in regenerative medicine. They can be isolated from a variety of adult tissues, including bone marrow, and can be differentiated into multiple cell types of the mesodermal lineage, including adipocytes, osteocytes, and chondrocytes. Stem cell differentiation is controlled by a process of interacting lineage-specific and multipotent genes. In this chapter, the authors use full genome microarrays to explore gene expression profiles in the process of Osteo-, Adipo-, and Chondro-Genic lineage commitment of human mesenchymal stem cells.


Gene ◽  
2004 ◽  
Vol 340 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Shih-Chieh Hung ◽  
Ching-Fang Chang ◽  
Hsiao-Li Ma ◽  
Tain-Hsiung Chen ◽  
Larry Low-Tone Ho

Sign in / Sign up

Export Citation Format

Share Document