scholarly journals Preparation, Modification, and Characterization of Alginate Hydrogel with Nano-/Microfibers: A New Perspective for Tissue Engineering

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bianca Palma Santana ◽  
Fernanda Nedel ◽  
Evandro Piva ◽  
Rodrigo Varella de Carvalho ◽  
Flávio Fernando Demarco ◽  
...  

We aimed to develop an alginate hydrogel (AH) modified with nano-/microfibers of titanium dioxide (nfTD) and hydroxyapatite (nfHY) and evaluated its biological and chemical properties. Nano-/microfibers of nfTD and nfHY were combined with AH, and its chemical properties were evaluated by FTIR spectroscopy, X-ray diffraction, energy dispersive X-Ray analysis, and the cytocompatibility by the WST-1 assay. The results demonstrate that the association of nfTD and nfHY nano-/microfibers to AH did not modified the chemical characteristics of the scaffold and that the association was not cytotoxic. In the first 3 h of culture with NIH/3T3 cells nfHY AH scaffolds showed a slight increase in cell viability when compared to AH alone or associated with nfTD. However, an increase in cell viability was observed in 24 h when nfTD was associated with AH scaffold. In conclusion our study demonstrates that the combination of nfHY and nfTD nano-/microfibers in AH scaffold maintains the chemical characteristics of alginate and that this association is cytocompatible. Additionally the combination of nfHY with AH favored cell viability in a short term, and the addition of nfTD increased cell viability in a long term.

2019 ◽  
Vol 942 ◽  
pp. 40-49
Author(s):  
Yulia Murashkina ◽  
Olga B. Nazarenko

Natural zeolite of Shivirtui deposit (Russia) was modified with nanofibers of aluminum oxyhydroxide AlOOH. Aluminum oxyhydroxide nanofibers were produced at the heating and oxidation of aluminum powder with water. The properties of modified zeolite were investigated by means of X-ray diffraction, transmission electronic microscopy, scanning electronic microscopy, low-temperature nitrogen adsorption, thermal analysis, and Fourier transform infrared spectroscopy. It was found that water content in the modified sample of zeolite was about 15 %. Based on the study of the physical and chemical properties, shivirtui zeolite modified with nanofibers of aluminum oxyhydroxide can be proposed for use as a flame-retardant additive to polymers.


2014 ◽  
Vol 631 ◽  
pp. 137-142 ◽  
Author(s):  
F.N. Oktar ◽  
H. Gokce ◽  
O. Gunduz ◽  
Y.M. Sahin ◽  
D. Agaogullari ◽  
...  

In this study the structural and chemical properties of barnacle shell based bioceramic materials (i.e. hydroxyapatite, whitlockite, monetite and other phases) were produced by using mechano-chemical (hot-plate) conversion method. Cleaned barnacle shells were ball milled down to <75µm in diameter. Differential thermal and gravimetric analyses (DTA/TGA) were performed to determine the exact CaCO3 content. Sample batches of 2g were prepared from the fine powders produced. For each batch, the required volume of an aqueous H3PO4 solution was calculated in order to set the stoichiometric molar ratio of Ca/P equal to 1.5 for ß-tricalcium phosphate (ß-TCP) or to 1.667 for hydroxyapatite (HA). The temperature was set to 80°C for 15 minutes to complete the process. After the titration of the equivalent amount of H3PO4 into the prepared solution, agitation was carried out on a hot-plate (i.e. mechano-chemical processing) for 8 hours. The sediments formed were dried and the resulting TCP and HA powders were calcined at 400°C and 800°C respectively. For complete characterization of the bioceramics produced, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses were carried out. The current study proposes a simple, economic and time efficient method for nano-bioceramic production.


2014 ◽  
Vol 979 ◽  
pp. 440-443
Author(s):  
W. Siriprom ◽  
K. Teanchai ◽  
S. Kongsriprapan ◽  
J. Kaewkhao ◽  
N. Sangwaranatee

The chemical and physical properties of topsoil and subsoil which collected from the cassava cropping area in Chonburi Province have been investigated. The characterization of both soil sample were used X-Ray Diffraction (XRD), Energy Dispersive X-Ray Fluorescence (EDXRF) while FTIR used to confirmed the formation of intermolecular bonding and Thermo-Gravimetric Analysis (TGA) used for investigated the crystalline. It was found that, the XRD pattern indicated quartz phase. The chemical composition by XRF reported that the soils samples consist of Si, Al, Ca, Fe, K, Mn, Ti, Cr, Zn, Ag and Cu. and TGA results, noticed that the removal of moisture and organics material.


2020 ◽  
pp. 096739112092169
Author(s):  
Asmaa Bouazza ◽  
Salah Bassaid ◽  
Bouabdallah Daho ◽  
Massimo Messori ◽  
Abdelkader Dehbi

The aim of this work is to study some physical and chemical properties of an organic semiconductor (OSc)/ x%titanium dioxide (TiO2) heterosystem (with 0 ≤ x ≤ 20%) (OScs/ x%TiO2). The OSc is obtained from pure curcumin and paracetamol as starting molecules. The synthesis methodology of the mixtures of OScs/ x%TiO2 heterosystem involves a microwave-assisted multicomponent reaction using curcumin, paracetamol, and TiO2 as a heterogeneous solution. All mixtures were analyzed by Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis/differential thermal analysis, X-ray diffraction, ultraviolet–visible spectroscopy, and scanning electron microscopy. The results obtained show a new nanocomposite with interesting pharmaceutical, optical, electronic, and structural properties, which can be used in the fields of energy production, water purification, and air purification, as a biomaterial and for electronic applications.


1999 ◽  
Vol 32 (1) ◽  
pp. 60-64
Author(s):  
Krishan Lal ◽  
S. Niranjana N. Goswami ◽  
J. Miao ◽  
H. L. Hartnagel

High-resolution X-ray diffraction techniques have been employed successfully to evaluate crystalline quality and long-term stability of coiled membranes. The process of fabrication involves photolithography, implantation by 2 MeV N^{2+} ions inn-type GaAs substrates, followed by selective etching. A five-crystal X-ray diffractometer was employed in (+, −, +) setting with an Mo Kα1exploring beam for high-resolution X-ray diffractometry and topography experiments. The exploring-beam width was reduced to illuminate different segments of the coiled membrane. Diffraction curves recorded from the bulk crystal surrounding the sensor had a half width of 26 arcseconds, whereas the half widths from sensor segments were in the range ∼58 to ∼166 arcseconds. Different segments (particularly vertical ones) were identified from the observed angular separations between different diffraction peaks as well as from the shape of the diffraction peaks. It was found that different segments of the sensor were tilted with respect to one another and the tilt angles were in the range 15–212 arcseconds. High-resolution X-ray diffraction topographs recorded from (5\bar 11) and (400) diffracting planes revealed that the sides of the trough below the membrane created by etching are not vertical, but tapered. Also, there is a thin strip of crystal freely hanging over the tapered regions as a result of underetching. The surface of the cavity is uneven. The structural perfection of different membrane segments could also be ascertained from the contrast in topographs.


2015 ◽  
Vol 1101 ◽  
pp. 336-339 ◽  
Author(s):  
Triastuti Sulistyaningsih ◽  
Sri Juari Santosa ◽  
Dwi Siswanta ◽  
Bambang Rusdiarso

Fe3O4/Mg-Al-NO3-hydrotalcite composite compounds have been synthesized by hydrothermal process followed by calcination to learn the differences in physical and chemical properties of each compound. Hydrothermal was performed at a temperature of 120 °C for 5 h and calcinations was at 450 °C for 3 hours. Characterization of the composite compounds was conducted using the Fourier Transform Infrared Spectroscopy (FTIR), the X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Vibrating Sample Magnetometer (VSM). The characterization results showed that crystallinity, surface area and magnetic properties of hydrothermally treated Mg/Al hydrotalcite-magnetite were higher than those unhydrothermal and calcination products.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1129-C1129
Author(s):  
Louiza Dimowa ◽  
Rositsa Nikolova ◽  
Ventsi Dyulgerov ◽  
Vladislav Kostov-Kytin ◽  
Boris Shivachev

Synthesis and characterization of porous metal organic frameworks (MOFs) has prompted considerable interest because of the possibility to design the pore size and physical/chemical properties by suitable selection of the organic linkers (ligands). In this work, we have chosen a classical solvothermal synthesis strategy involving 4-carboxyphenylboronic acid, a molecule that is analogic to the terephthalic acid, Zn- Cd- Ni-OAc metal salts and DMF as solvent. It is known that during solvothermal synthesis DMF decomposes to dimethylamine which is easily incorporated in MOF's [1], [2]. The obtained MOFs are characterized by single-crystal X-ray diffraction, X-ray powder diffraction, TG analyses, IR spectroscopy and BET analyses. Preliminary X-ray single crystal diffraction results showed that a new type of structure may be produced in function of the temperature. The Cd- structure crystalizes in the hexagonal Space group P6222, with respective parameters of a = 14.4113(12), c = 13.0416(7) Å (Fig. 1). The cadmium ion is tetra coordinated by the oxygens of the B(OH)2 and COO- moieties. The 4-carboxyphenylboronic acid is disorder and attempts to lower the symmetry to model the disorder resulted in unstable refinement. In the studied systems in addition to the reported new compound isotypical structures to MOF-5 containing 4-carboxyphenylboronic acid instead of 1,4-benzenedicarboxylate were also obtained.


2011 ◽  
Vol 55-57 ◽  
pp. 1506-1510 ◽  
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A series of Y/TiO2nanoparticles (NPs) were synthesized via sol-gel method. The crystal structures, morphologies and chemical properties were characterized using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). We investigated the effects of different doping amounts of Y on the reaction of CO2photoreduction. The results shown that 0.1 wt.%Y/TiO2(0.1YT) performed the highest photocatalytic activity, which yielded 384.62 µmol/g∙cat. formaldehyde after 6 h of UV illumination.


2017 ◽  
Vol 14 (28) ◽  
pp. 66-71
Author(s):  
Gerson E. DELGADO ◽  
Lusbely BELANDRIA ◽  
Asiloé J. MORA ◽  
Julia BRUNO-COLMENÁREZ ◽  
Gustavo MARROQUÍN

The design of multicomponent crystals offers a means to modify the physicochemical properties of crystals without altering the chemical properties of a particular molecule. In this study, a multicomponent crystal, the salt of malonic acid with p-chloroaniline, was synthetized and structurally characterized. The title compound wasprepared by grinding in an agate mortar, and its structure was studied by powder and single-crystal X-ray diffraction. This compound crystallize in the monoclinic system with space group P21/c, Z = 4, and unit cell parameters a = 12.9776(7)Å, b = 9.2308(5)Å, c = 8.5170(5)Å, β = 93.474(3)°. The multicomponent compound, p-chloroanilinium semi-malonate, can be described as an ionic ensemble assisted by hydrogen bonds established between p-chloroanilinium cations and semi-malonate anions. The molecular structure and crystal packing are stabilized mainly by intermolecular O-H•••O and N-H•••O hydrogen bonds interactions. The molecules construct a supramolecular assembly with a two-dimensional hydrogen bonded network along the ca plane.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1417
Author(s):  
Anton Petrovich Novikov ◽  
Mikhail Alexandrovich Volkov ◽  
Alexey Vladimirovich Safonov ◽  
Mikhail Semenovich Grigoriev ◽  
Evgeny Vladilenovich Abkhalimov

The aim of the work was to synthesize new perspective compounds of palladium and platinum with nitrogenous bases (guanine), promising for use in biomedicine and catalysis. The article describes the synthesis of new [PdCl2(HGua)2]Cl2·H2O and [PtCl5(HGua)]·2H2O compounds using wet chemistry methods. The structure of the obtained single crystals was established by the method of single crystal X-ray diffraction. The complexes have an M-N bond, and the organic ligand is included in the first coordination sphere. The analysis of Hirshfeld surfaces for the obtained complexes and their analogues for the analysis of intermolecular interactions was carried out. In the palladium complex we obtained, π-halogen and π-stacking interactions were found; in analogues, such interactions were not found. π-halogen and halogen interactions were found in structure of platinum complex and its analogues.


Sign in / Sign up

Export Citation Format

Share Document