scholarly journals Synthesis and Characterization of New Guanine Complexes of Pt(IV) and Pd(II) by X-Ray Diffraction and Hirshfeld Surface Analysis

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1417
Author(s):  
Anton Petrovich Novikov ◽  
Mikhail Alexandrovich Volkov ◽  
Alexey Vladimirovich Safonov ◽  
Mikhail Semenovich Grigoriev ◽  
Evgeny Vladilenovich Abkhalimov

The aim of the work was to synthesize new perspective compounds of palladium and platinum with nitrogenous bases (guanine), promising for use in biomedicine and catalysis. The article describes the synthesis of new [PdCl2(HGua)2]Cl2·H2O and [PtCl5(HGua)]·2H2O compounds using wet chemistry methods. The structure of the obtained single crystals was established by the method of single crystal X-ray diffraction. The complexes have an M-N bond, and the organic ligand is included in the first coordination sphere. The analysis of Hirshfeld surfaces for the obtained complexes and their analogues for the analysis of intermolecular interactions was carried out. In the palladium complex we obtained, π-halogen and π-stacking interactions were found; in analogues, such interactions were not found. π-halogen and halogen interactions were found in structure of platinum complex and its analogues.

2018 ◽  
Vol 73 (12) ◽  
pp. 999-1003 ◽  
Author(s):  
Mohammad Hakimi ◽  
Homeyra Rezaei ◽  
Keyvan Moeini ◽  
Heidar Raissi ◽  
Vaclav Eigner ◽  
...  

AbstractA new cyclotriphosphazene, 2,2,4,4,6,6-hexakis (o-tolylamono)-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinine (MPAP), was prepared using microwave irradiation and identified by elemental analysis, FT-IR, Raman, 31P NMR spectroscopy, and single-crystal X-ray diffraction. In the crystal, in addition to hydrogen bonds, the network is further stabilized by inter- and intramolecular π–π stacking interactions between aromatic rings.


2011 ◽  
Vol 66 (9) ◽  
pp. 930-934
Author(s):  
Xin Leng ◽  
Bingqin Yang ◽  
Yuanyuan Liu ◽  
Yi Xie ◽  
Jie Tong

Three novel nitrogen-containing macrolides have been synthesized by esterification. All of them have been characterized by infrared (IR), elemental analysis, mass spectra (MS), and 1H NMR spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction. The preparation methods and the intermolecular associations based on C-H・・・O hydrogen bonds and π- π stacking interactions are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Bianca Palma Santana ◽  
Fernanda Nedel ◽  
Evandro Piva ◽  
Rodrigo Varella de Carvalho ◽  
Flávio Fernando Demarco ◽  
...  

We aimed to develop an alginate hydrogel (AH) modified with nano-/microfibers of titanium dioxide (nfTD) and hydroxyapatite (nfHY) and evaluated its biological and chemical properties. Nano-/microfibers of nfTD and nfHY were combined with AH, and its chemical properties were evaluated by FTIR spectroscopy, X-ray diffraction, energy dispersive X-Ray analysis, and the cytocompatibility by the WST-1 assay. The results demonstrate that the association of nfTD and nfHY nano-/microfibers to AH did not modified the chemical characteristics of the scaffold and that the association was not cytotoxic. In the first 3 h of culture with NIH/3T3 cells nfHY AH scaffolds showed a slight increase in cell viability when compared to AH alone or associated with nfTD. However, an increase in cell viability was observed in 24 h when nfTD was associated with AH scaffold. In conclusion our study demonstrates that the combination of nfHY and nfTD nano-/microfibers in AH scaffold maintains the chemical characteristics of alginate and that this association is cytocompatible. Additionally the combination of nfHY with AH favored cell viability in a short term, and the addition of nfTD increased cell viability in a long term.


2014 ◽  
Vol 936 ◽  
pp. 915-918
Author(s):  
Hui Duan Li

A novel zinc organophosphonate was synthesized under solvothermal conditions by using [piperazine-1,4-diyldi (methylene)] bis (phosphonic acid) as a organic ligand. Single-crystal X-ray diffraction analysis reveals that compound 1 crystallized in the triclinic space group P-1 (No. 2). Compound 1 formulated as Zn (O3PCH2NHC4H8NHCH2PO3)·H2O. Compound 1 featured a 3D open-framework. Notably, the structure of compound 1 featured one-dimensional channel in the [00 direction. Water molecules were located in these channels. Further characterizations of compound 1 have been performed, including X-ray powder diffraction, IR, ICP and CHN analyses.


Author(s):  
P. Ahmadian Namini ◽  
A. A. Babaluo ◽  
M. Akhfash Ardestani ◽  
E. Jannatduost ◽  
M. Peyravi

In this research, α-Al2O3 nanopowder was successfully synthesized via a new wet chemistry (liquid phase reaction) method. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for the characterization of the synthesized nanopowder. The FTIR and XRD results showed that α-alumina nanopowder was synthesized from ammonium dowsonite powder after the calcination at 1150 °C for 1 h. Also, SEM micrographs showed that the final nanoparticles have aggregated structures in 50–100 nm range.


1984 ◽  
Vol 44 ◽  
Author(s):  
Dale R. Brown ◽  
Michael W. Grutzeck

AbstractPhase relations in the system 3CaO·AI2O3-CaSO4-CaI2-H2O in equilibrium with excess water were established by means of room temperature bottle hydration of various bulk chemistries in the system. Starting with end members ettringite (3CaO·Al2O3·3CaSO4·32H2O) and tetracalcium aluminate monosulfate-12-hydrate (3CaO·Al2O3-CaSO4-12H2O), iodine-substituted analogue phases were synthesized which containe increasingly greater percentages of iodine. The iodine-substituted ettringite was found to be unstable whereas the iodine-substituted monosulfate formed readily. SEM, wet chemistry, IR, and x-ray diffraction characterization of the latter phase suggest that its formula is 3CaO·Al2O3·Ca(IO3)2·2H2O. Cement pellets containing this “Afm” iodine-substituted phase were subjected to a modified MCC-1 static leach test. Although the normalized iodine leach rate was relatively high when compared with AgI encapsulated in portland Type III cement, this same leach rate was approximately equal to the rates that have been reported for Ba(IO3)2, Ca(IO3)2, and Hg(IO3)2 in portland cement. The normalized iodine leach rate obtained also was found to be roughly comparable to that given for I-sodalite in cement. Diffusion is indicated as the primary leach mechanism, becoming dominant after the first three days of leaching.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


2018 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
S Chirino ◽  
Jaime Diaz ◽  
N Monteblanco ◽  
E Valderrama

The synthesis and characterization of Ti and TiN thin films of different thicknesses was carried out on a martensitic stainless steel AISI 410 substrate used for tool manufacturing. The mechanical parameters between the interacting surfaces such as thickness, adhesion and hardness were measured. By means of the scanning electron microscope (SEM) the superficial morphology of the Ti/TiN interface was observed, finding that the growth was of columnar grains and by means of EDAX the existence of titanium was verified.  Using X-ray diffraction (XRD) it was possible to observe the presence of residual stresses (~ -3.1 GPa) due to the different crystalline phases in the coating. Under X-ray photoemission spectroscopy (XPS) it was possible to observe the molecular chemical composition of the coating surface, being Ti-N, Ti-N-O and Ti-O the predominant ones.


2019 ◽  
Author(s):  
KAIKAI MA ◽  
Peng Li ◽  
John Xin ◽  
Yongwei Chen ◽  
Zhijie Chen ◽  
...  

Creating crystalline porous materials with large pores is typically challenging due to undesired interpen-etration, staggered stacking, or weakened framework stability. Here, we report a pore size expansion strategy by self-recognizing π-π stacking interactions in a series of two-dimensional (2D) hydrogen–bonded organic frameworks (HOFs), HOF-10x (x=0,1,2), self-assembled from pyrene-based tectons with systematic elongation of π-conjugated molecular arms. This strategy successfully avoids interpene-tration or staggered stacking and expands the pore size of HOF materials to access mesoporous HOF-102, which features a surface area of ~ 2,500 m2/g and the largest pore volume (1.3 cm3/g) to date among all reported HOFs. More importantly, HOF-102 shows significantly enhanced thermal and chemical stability as evidenced by powder x-ray diffraction and N2 isotherms after treatments in chal-lenging conditions. Such stability enables the adsorption of dyes and cytochrome c from aqueous media by HOF-102 and affords a processible HOF-102/fiber composite for the efficient photochemical detox-ification of a mustard gas simulant.


Sign in / Sign up

Export Citation Format

Share Document