scholarly journals Comparative Gene Expression Profiling in Human Cumulus Cells according to Ovarian Gonadotropin Treatments

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Said Assou ◽  
Delphine Haouzi ◽  
Hervé Dechaud ◽  
Anna Gala ◽  
Alice Ferrières ◽  
...  

Inin vitrofertilization cycles, both HP-hMG and rFSH gonadotropin treatments are widely used to control human follicle development. The objectives of this study are (i) to characterize and compare gene expression profiles in cumulus cells (CCs) of periovulatory follicles obtained from patients stimulated with HP-hMG or rFSH in a GnRH antagonist cycle and (ii) to examine their relationship within vitroembryo development, using Human Genome U133 Plus 2.0 microarrays. Genes that were upregulated in HP-hMG-treated CCs are involved in lipid metabolism (GM2A) and cell-to-cell interactions (GJA5). Conversely, genes upregulated in rFSH-treated CCs are implicated in cell assembly and organization (COL1A1andCOL3A1). Interestingly, some genes specific to each gonadotropin treatment (NPY1RandGM2Afor HP-hMG;GREM1andOSBPL6for rFSH) were associated with day 3 embryo quality and blastocyst grade at day 5, while others (STC2andPTX3) were related toin vitroembryo quality in both gonadotropin treatments. These genes may prove valuable as biomarkers ofin vitroembryo quality.

2016 ◽  
Vol 28 (3) ◽  
pp. 278 ◽  
Author(s):  
Su-Jin Cho ◽  
Kyeong-Lim Lee ◽  
Yu-Gon Kim ◽  
Dong-Hoon Kim ◽  
Jae-Gyu Yoo ◽  
...  

We compared the nuclear maturation status and gene-expression profiles of canine cumulus cells (CCs) derived from cumulus–oocyte complexes (COCs) that were spontaneously ovulated versus those that were matured in vitro. Cumulus–oocyte complexes were retrieved from uteri by surgical flushing (after spontaneous ovulation) or by ovariectomy follicle aspiration and in vitro maturation. The objective of Experiment 1 was to investigate the nuclear maturation status of in vivo- versus in vitro-matured oocytes. The objective of Experiment 2 was to compare gene-expression profiles of CCs derived from in vivo- versus in vitro-matured COCs. Genes analysed are related to cell maturation, development and apoptosis, including GDF9, MAPK1, PTX3, CX43, Bcl2 and BAX; mRNA expression for all of these genes, except for GDF9, differed (P < 0.05) between in vivo- and in vitro-matured CCs. In conclusion, we found that gene-expression profiles are related to the quality of CCs and therefore posit that monitoring gene expression could be a useful strategy to guide attempts to improve in vitro culture systems.


2005 ◽  
Vol 17 (9) ◽  
pp. 96
Author(s):  
M. Zaitseva ◽  
P. A. W. Rogers

Fibroids are benign neoplasms of the smooth muscle cells of the uterus. Cultured myometrial (M) and fibroid (F) smooth muscle cells (SMC) have been widely used as a model for the study of fibroid growth. Although it has been shown that FSMC can behave differently in culture to MSMC, it is not clear how relevant the cultured cells and their responses are to the in-vivo situation. The aim of the present study was to compare gene expression profiles of M and F tissue to cells isolated from the same tissue and cultured for up to 3 passages. M and F were collected from hysterectomy specimens (n = 6), part was snap frozen for RNA and the rest used to isolate SMC, which were cultured for 3 passages and RNA was collected at passage 0 (P0) and 3 (P3). 36 microarrays were performed on 8K human cDNA slides, 6 per each specimen (3 for M and 3 for F: tissue, cell at P0 and P3) against reference RNA. Analysis revealed significant differences between tissues and cultured cells. Independent clustering assigned tissues versus cells into two distinct groups based on their expression profiles. Parametric ANOVA with Benjamini-Hochberg correction and post-hoc testing was used to determine similarities and differences between tissues and cells. 128 genes were found to be statistically different between M and F tissue, 66 between MSMC and FSMC at P0, and only 9 at P3. More than 1100 genes were significantly changed between tissues and cultured cells, with 648 genes common between both M and F cells at P0 and P3. Similar numbers of genes were up regulated as were down regulated. Expression profiles of genes of interest including estrogen receptor α and progesterone receptor were also validated using real-time PCR. This is the first study to compare gene expression of in vivo and in vitro fibroid and myometrial SMC. The results demonstrate that large changes occur in SMC gene expression in culture, reducing differences between myometrial and fibroid cells. This study indicates that results of in vitro studies should be interpreted with caution as many genes have an altered gene expression profile in culture.


2018 ◽  
Vol 30 (3) ◽  
pp. 417 ◽  
Author(s):  
G. Gamarra ◽  
C. Ponsart ◽  
S. Lacaze ◽  
F. Nuttinck ◽  
A. Cordova ◽  
...  

Dietary supplementation with propylene glycol (PG) increases in vitro production of high-quality embryos in feed-restricted heifers. The aim of the present study was to evaluate the effects of PG in feed-restricted heifers on follicular fluid insulin and insulin-like growth factor (IGF) 1 concentrations, expression of IGF system genes in oocytes and cumulus cells and the expression of selected genes in blastocysts. Feed-restricted (R) heifers were drenched with water or PG during induced oestrous cycles (400 mL of PG or water/drench, daily drenching at 1600 hours for the first 9 days of the oestrous cycle). Ovum pick-up (OPU) was performed after superovulation to produce in vitro embryos and without superovulation to recover oocytes, cumulus cells and follicular fluid. OPU was also performed in a control group (not feed restricted and no drenching). Follicular fluid IGF1 concentrations were reduced by R, and PG restored IGF1 concentrations to those seen in the control group. In cumulus cells, expression of IGF1, IGF1 receptor (IGF1R) and IGF binding protein 4 (IGFBP4) was decreased in the R group, and fully (IGF1 and IGF1R) or partially (IGFBP4) restored to control levels by PG. Blastocyst perilipin 2 (PLIN2; also known as adipophilin), Bcl-2-associated X protein (BAX), SCL2A1 (facilitated glucose/fructose transporter GLUT1), aquaporin 3 (AQP3), DNA (cytosine-5)-methyltransferase 3A (DNMT3A) and heat shock 70-kDa protein 9 (HSPA9B) expression were decreased in R heifers; PG restored the expression of the last four genes to control levels. In conclusion, these results suggest that, during follicular growth, PG exerts epigenetic regulatory effects on gene expression in blastocyst stage embryos.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


2005 ◽  
Vol 288 (6) ◽  
pp. C1211-C1221 ◽  
Author(s):  
Steven J. Pardo ◽  
Mamta J. Patel ◽  
Michelle C. Sykes ◽  
Manu O. Platt ◽  
Nolan L. Boyd ◽  
...  

Exposure to microgravity causes bone loss in humans, and the underlying mechanism is thought to be at least partially due to a decrease in bone formation by osteoblasts. In the present study, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 preosteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using the RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating a bone loss response that occurs in real microgravity conditions without altering cell proliferation and shape. Next, we performed DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined using the microarray, 88 were downregulated and 52 were upregulated significantly more than twofold using simulated microgravity compared with the static 1-g condition. We then verified the microarray data for some of the genes relevant in bone biology using real-time PCR assays and immunoblotting. We confirmed that microgravity downregulated levels of alkaline phosphatase, runt-related transcription factor 2, osteomodulin, and parathyroid hormone receptor 1 mRNA; upregulated cathepsin K mRNA; and did not significantly affect bone morphogenic protein 4 and cystatin C protein levels. The identification of gravisensitive genes provides useful insight that may lead to further hypotheses regarding their roles in not only microgravity-induced bone loss but also the general patient population with similar pathological conditions, such as osteoporosis.


2021 ◽  
Author(s):  
◽  
Zaramasina Clark

<p>The number of cycles of assisted reproductive technologies (ART) performed increased by ~9.5 % globally between 2008 and 2010. In spite of this, the success rate in terms of delivery was only ~19.0 % (Dyer et al., 2016). This discrepancy between the demand for, and success of, these technologies necessitates the development of tools to improve ART efficiency. To facilitate this, a better understanding of how the microenvironment changes within the developing follicle to culminate in a mature, developmentally-competent oocyte is required. This study employed an in vivo and in vitro ovine model to investigate the relationship between the surrounding microenvironment and oocyte maturation, and in particular, the attainment of oocyte developmental competency and high-quality embryos.  The first objective of this PhD study was to comprehensively investigate the changing microenvironment of in vivo matured, presumptive preovulatory (PPOV) follicles from wild-type (++) and high ovulation rate (OR; I+B+) ewes. The high OR ewes were heterozygous carriers of mutations in BMP15 (I+) and BMPRIB (B+). Functional differences in follicular somatic (granulosa and cumulus) cells between these genotypes, including differential gonadotropin responsiveness of granulosa cells, composition of follicular fluid and gene expression profiles in cumulus cells were evident. These differences emerged as part of a compensatory mechanism by which oocytes from smaller follicles, containing fewer granulosa cells, achieved developmental competency in I+B+ ewes.  The second objective of this PhD study was to develop new approaches for improving current in vitro maturation (IVM) strategies. The first approach utilised in this study focused on developing biomarkers that could be used to improve prediction of developmental competency in oocytes and in vitro produced embryos. This involved interrogating the hypothesis that a combination of molecular and morphokinetic biomarkers would better predict the developmental competency of oocytes and embryos compared to using these biomarkers alone. The second approach utilised in this PhD study tested the effects of modulating IVM conditions to better mimic the follicular microenvironment of a high, compared to a low, OR species on oocyte developmental competency and embryo quality. This involved supplementing IVM media with different ratios of two oocyte-secreted growth factors, i.e. GDF9:BMP15, that were representative of low or high OR species. These approaches demonstrated significant potential and warrant further investigation.  The most significant finding of this study was that despite variances in the surrounding microenvironment during in vivo and in vitro oocyte maturation that culminated in differential gene expression patterns in cumulus cells, and divergent gonadotropin-responsiveness of granulosa cells, the gene expression signatures of developmentally-competent oocytes and the morphokinetics of high-quality embryos were unaltered. This confirms the value of developing such biomarkers for oocyte development competency and embryo quality that remain unaltered despite a changing surrounding environment. Interestingly, simulating the ratio of GDF9:BMP15 that oocytes from high OR species are exposed to during maturation improved developmental competency in oocytes as demonstrated by increased blastocyst rates. Furthermore, this study has demonstrated that combinations of molecular (cumulus cell gene expression) and morphokinetic biomarkers improved the ability to predict developmental competency in oocytes and embryos. Overall, this study revealed novel information regarding the follicular microenvironment during final maturation and identified several novel approaches to improving the efficiency of ART.</p>


2008 ◽  
Vol 20 (1) ◽  
pp. 165
Author(s):  
X. S. Cui ◽  
X. Y. Li ◽  
T. Kim ◽  
N.-H. Kim

Trichostatin A (TSA) is an inhibitor of histone deacetylase and is able to alter gene expression patterns by interfering with the removal of acetyl groups from histones. The aim of this study was to determine the effect of TSA treatment on the development and gene expression patterns of mouse zygotes developing in vitro. The addition of 100 nm TSA to the culture medium did not affect the cleavage of mouse embryos (TSA treatment, 148/150 (99%) v. control, 107/107 (100%)); however, embryos that were treated with TSA arrested at the 2-cell stage (145/148, 98%). We estimated the number of nuclei in control and TSA-treated embryos by propidium iodide staining, taking into account the presence of any cells with two or more nuclei. At 62–63 h post-hCG stimulation, control zygotes had developed to the 4-cell stage and exhibited one nucleus in each blastomere, indicative of normal development. In contrast, we observed tetraploid nuclei in at least one blastomere in 20.8% (11/53) of the embryos that had been treated with TSA. At 28–29 h post-hCG stimulation (metaphase of the 1-cell stage), there was no difference in the mitotic index (as determined by analyzing the microtubule configuration) in the TSA group compared to the control group. At the 2-cell stage, however, we did not observe mitotic spindles and metaphase chromatin in embryos in the TSA treatment group compared to the controls. Interestingly, when embryos were cultured in TSA-free medium from 35 h post-hCG stimulation (S- or early G2-phase of the 2-cell stage) onward, almost all of them (47/50) developed to the blastocyst stage. In contrast, when embryos were cultured in TSA-free medium from 42 h post-hCG stimulation (middle G2-phase of the 2-cell stage) onward, they did not develop to the 4-cell stage. We used Illumina microarray technology to analyze the gene expression profiles in control and TSA-treated late 2-cell-stage embryos. Applied Biosystems Expression System software was used to extract assay signals and assay signal-to-noise ratio values from the microarray images. Our data showed that 897 genes were significantly (P < 0.05; 2-sample t-test) up- or down-regulated by TSA treatment compared to controls. Analysis using the PANTHER classification system (https://panther.appliedbiosystems.com) revealed that the 575 genes that were differentially expressed in the TSA group compared to the control were classified as being associated with putative biological processes or molecular function. Overall, in terms of putative biological processes, more nucleoside, nucleotide, and nucleic acid metabolism, protein metabolism and modification, signal transduction, developmental process, and cell cycle genes were differentially expressed between the TSA and control groups. In terms of putative molecular function, more nucleic acid-binding transcription factor and transferase genes were differentially expressed between the groups. The results collectively suggest that inhibition of histone acetylation in mouse embryos affects gene expression profiles at the time of zygotic genome activation, and this subsequently affects further development.


Sign in / Sign up

Export Citation Format

Share Document