scholarly journals Model of Infiltration of Spent Automotive Catalysts by Molten Metal in Process of Platinum Metals Recovery

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Agnieszka Fornalczyk ◽  
Slawomir Golak ◽  
Mariola Saternus

This paper presents the model for the washing-out process of precious metals from spent catalysts by the use of molten lead in which the metal flow is caused by the rotating electromagnetic field and the Lorentz force. The model includes the coupling of the electromagnetic field with the hydrodynamic field, the flow of metal through anisotropic and porous structure of the catalyst, and the movement of the phase boundary (air-metal) during infiltration of the catalyst carrier by the molten metal. The developed model enabled analysis of the impact of spacing between the catalysts and the supply current on the degree of catalyst infiltration by the molten metal. The results of calculations carried out on the basis of the model were verified experimentally.

2014 ◽  
Vol 59 (2) ◽  
pp. 779-783
Author(s):  
A. Fornalczyk ◽  
S. Golak ◽  
R. Przyłucki ◽  
J. Willner

Abstract The lifetime of a catalytic converters is limited. Today’s environmental regulations require that used converters should be properly recycled as a valuable source of precious metals, Al2O3 and steel scrap. The precious metals used in the devices perform catalytic functions. They are suspended in a ceramic or metal carrier. This paper deals with the recovery of precious metals from automotive converters using a metal-collector method. In order to speed up the washout of the precious metals from the capillary structure of the converter, the movement of the liquid metal-collector was forced by the electromagnetic field. The research was aimed at improving the effective velocity of the liquid metal flow through the carrier by means of a device with a double windings. Various ways of power supply were considered. The calculation experiment was performed as a weakly coupled analysis of the electromagnetic field and flow field.


2012 ◽  
Vol 538-541 ◽  
pp. 858-862
Author(s):  
Li Gao ◽  
Rong Rong Wang

Electromagnetic stirring is an effective technique of improving the solidification structure and mechanical properties during continuous casting,because there is a notably effect of the flow on the density,segregation and inclusion of molten metal. In order to better understand the molten metal flow, the analysis software-ANSYS is used to simulate the 3D couple field of electromagnetic field and flow field for the self-developed rotating electromagnetic stirring equipment. The pure aluminum,tin and lead are used for both of experiment and simulation. The following results are obtained: 1) The magnetic induction intensity of liquid metal surface (B0) is in inversely proportional to the current frequency and is proportional to the input volt/current. 2) The maximum electromagnetic force is directly proportional to the square of magnetic induction intensity (B0) and the nth-power of current frequency decreases with the increase of the electric resistance of molten metal and changes from 1/2 to 3/2. The n is 1/2 for aluminum metal and 1 for tin metal and lead metal. 3) The rotating velocity of molten metal is directly proportional to the magnetic induction intensity(B0) and is in inversely proportional to the square root of the density of molten metal. The viscosity of molten metal has little effect on the rotating velocity. The above results are consistent with experiment results, which prove the credibility of simulate results.


2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Martyna Rzelewska ◽  
Magdalena Regel-Rosocka

Abstract Rhodium, ruthenium, palladium, and platinum are classified as platinum group metals (PGM). A demand for PGM has increased in recent years. Their natural sources are limited, therefore it is important, and both from economical and environmental point of view, to develop effective process to recover PGM from waste/secondary sources, such as spent automotive catalysts. Pyrometallurgical methods have always been used for separation of PGM from various materials. However, recently, an increasing interest in hydrometallurgical techniques for the removal of precious metals from secondary sources has been noted. Among them, liquid-liquid extraction by contacting two liquid phases: aqueous solution of metal ions and organic solution of extractant is considered an efficient technique to separate valuable metal ions from solutions after leaching from spent catalysts.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1818
Author(s):  
Di-Si Wang ◽  
Bo Liu ◽  
Sheng Yang ◽  
Bin Xi ◽  
Long Gu ◽  
...  

China is developing an ADS (Accelerator-Driven System) research device named the China initiative accelerator-driven system (CiADS). When performing a safety analysis of this new proposed design, the core behavior during the steam generator tube rupture (SGTR) accident has to be investigated. The purpose of our research in this paper is to investigate the impact from different heating conditions and inlet steam contents on steam bubble and coolant temperature distributions in ADS fuel assemblies during a postulated SGTR accident by performing necessary computational fluid dynamics (CFD) simulations. In this research, the open source CFD calculation software OpenFOAM, together with the two-phase VOF (Volume of Fluid) model were used to simulate the steam bubble behavior in heavy liquid metal flow. The model was validated with experimental results published in the open literature. Based on our simulation results, it can be noticed that steam bubbles will accumulate at the periphery region of fuel assemblies, and the maximum temperature in fuel assembly will not overwhelm its working limit during the postulated SGTR accident when the steam content at assembly inlet is less than 15%.


Author(s):  
Manpreet Dash ◽  
Sangharsh Kumar ◽  
Partha Pratim Bandyopadhyay ◽  
Anandaroop Bhattacharya

The impact process of a molten metal droplet impinging on a solid substrate surface is encountered in several technological applications such as ink-jet printing, spray cooling, coating processes, spray deposition of metal alloys, thermal spray coatings, manufacturing processes and fabrication and in industrial applications concerning thermal spray processes. Deposition of a molten material or metal in form of a droplet on a substrate surface by propelling it towards it forms the core of the spraying process. During the impact process, the molten metal droplet spreads radially and simultaneously starts losing heat due to heat transfer to the substrate surface. The associated heat transfer influences impingement behavior. The physics of droplet impingement is not only related to the fluid dynamics, but also to the respective interfacial properties of solid and liquid. For most applications, maximum spreading diameter of the splat is considered to be an important factor for droplet impingement on solid surfaces. In the present study, we have developed a model for droplet impingement based on energy conservation principle to predict the maximum spreading radius and the radius as a function of time. Further, we have used the radius as a function of time in the heat transfer equations and to study the evolution of splat-temperature and predict the spreading factor and the spreading time and mathematically correlate them to the spraying parameters and material properties.


2011 ◽  
Vol 693 ◽  
pp. 179-184
Author(s):  
Thomas Jarlsmark ◽  
Jan Strömbeck ◽  
Mikael Terner ◽  
Jerry Wilkins

The ways to gain better quality and higher casting performance is an urgent topic among aluminium producers today. This issue is also often on the agenda at conferences like this and the subjects and technologies to achieve this varies. Controlling the molten metal flow by maintaining predefined levels or level patterns is one of many powerful tools to reach this goal. Precimeter Control specializes in applications for non-ferrous molten metal level measurement and molten metal flow control. By integration, or retrofitting, any new or existing casting line can easily be automatically controlled and gain improved casting performance in a cost efficient way. This paper will focus on the main benefits from automatic level control and how some plants have achieved improvements in their casting process of DC (Direct Chill) slab (or rolling ingot) casting after implementing such technology.


2021 ◽  
Vol 24 ◽  
pp. 100860
Author(s):  
Patiparn Ninpetch ◽  
Pruet Kowitwarangkul ◽  
Sitthipong Mahathanabodee ◽  
Prasert Chalermkarnnon ◽  
Phadungsak Rattanadecho

1986 ◽  
Vol 36 (9) ◽  
pp. 577-581
Author(s):  
Yasushi IWATA ◽  
Yoshiaki YAMAMOTO ◽  
Motoshi NAKAMURA ◽  
Haruo SUZUKI ◽  
Hiroshi SAWADA ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingzhe Liu ◽  
Jack Hau Yung Lo ◽  
Ye Li ◽  
Yuan Liu ◽  
Jinyu Zhao ◽  
...  

AbstractThe impact and splash of liquid drops on solid substrates are ubiquitous in many important fields. However, previous studies have mainly focused on spherical drops while the non-spherical situations, such as raindrops, charged drops, oscillating drops, and drops affected by electromagnetic field, remain largely unexplored. Using ferrofluid, we realize various drop shapes and illustrate the fundamental role of shape in impact and splash. Experiments show that different drop shapes produce large variations in spreading dynamics, splash onset, and splash amount. However, underlying all these variations we discover universal mechanisms across various drop shapes: the impact dynamics is governed by the superellipse model, the splash onset is triggered by the Kelvin-Helmholtz instability, and the amount of splash is determined by the energy dissipation before liquid taking off. Our study generalizes the drop impact research beyond the spherical geometry, and reveals the potential of using drop shape to control impact and splash.


Sign in / Sign up

Export Citation Format

Share Document