scholarly journals Protective Role ofPsoralea corylifoliaL. Seed Extract against Hepatic Mitochondrial Dysfunction Induced by Oxidative Stress or Aging

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Eunhui Seo ◽  
Yoon Sin Oh ◽  
Donghee Kim ◽  
Mi-Young Lee ◽  
Sungwook Chae ◽  
...  

The accumulation of oxidative damage and mitochondrial dysfunction is an important factor that contributes to aging. ThePsoralea corylifoliaseeds (PCS), commonly known as “Boh-Gol-Zhee” in Korea, have been used traditionally as a medicinal remedy. We investigated whether an extract of PCS has protective effects on oxidative stress and mitochondrial function in hepatocytes. The PCS extract showed an antisenescence effect on human diploid fibroblasts as evidenced by a decreased expression ofp16INK4amRNA and senescence-associatedβ-galactosidase staining. PCS extract treatment reduced H2O2-induced reactive oxygen species (ROS) production in HepG2 cells, inhibited ROS production in hepatocytes of aged mice, and increased superoxide dismutase activity. In H2O2-treated HepG2 cells, PCS extract treatment recovered ATP production. PCS extract treatment recovered the oxygen consumption rate and inhibited reduction of mitochondrial membrane potential induced by oxidative stress, suggesting improvement of mitochondrial function. In addition, PCS extract treatment recovered peroxisome proliferator-activated receptorγcoactivator 1αand carnitine palmitoyltransferase 1 mRNA and protein expression, and inhibited mitochondrial genome damage. Treatment with the major component of PCS extract, bakuchiol, also recovered mitochondrial dysfunction. On the basis of these results, we conclude that PCS extract inhibits ROS production and mitochondrial dysfunction induced by oxidative stress in hepatocytes.

2017 ◽  
Author(s):  
Chao Song ◽  
Jiamin Zhao ◽  
Jingcheng Zhang ◽  
Tingchao Mao ◽  
Beibei Fu ◽  
...  

AbstractOxidative stress induced by fluoride (F) is associated with fluorosis formation, but the underlying molecular mechanism remains unclear. In this study, Melatonin pretreatment suppressed F-induced hepatocyte injury in HepG2 cells. Melatonin increases the activity of superoxide dismutase (SOD2) by enhancing sirtuin 3 (SIRT3)-mediated deacetylation and promotes SOD2 gene expression via SIRT3-regulated DNA-binding activity of forkhead box O3 (FoxO3a), indicating that melatonin markedly enhanced mROS scavenging in F-exposed HepG2 cells. Notably, melatonin activated the peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α). PGC-1α interacted with the estrogen-related receptor alpha (ERRα) bound to the SIRT3 promoter, where it functions as a transcription factor to regulate SIRT3 expression. Furthermore, daily injection of melatonin for 30 days inhibited F-induced oxidative stress in mice liver, leading to improvement of liver function. Mechanistic study revealed that the protective effects of melatonin were associated with down-regulation of JNK1/2 phosphorylation in vitro and in vivo. Collectively, our data suggest a novel role of melatonin in preventing F-induced oxidative stress through activation of the SIRT3 pathway.


Author(s):  
Ryuni Kim ◽  
Hyebeen Kim ◽  
Minju Im ◽  
Sun Kyu Park ◽  
Hae Jung Han ◽  
...  

BST204 is a purified ginseng dry extract that has an inhibitory effect on lipopolysaccharide-induced inflammatory responses, but its effect on muscle atrophy is yet to be investigated. In this study, C2C12 myoblasts were induced to differentiate for three days followed by the treatment of dexamethasone (DEX), a corticosteroid drug, with vehicle or BST204 for one day and subjected to immunoblotting, immunocytochemistry, qRT-PCR and biochemical analysis for mitochondrial function. BST204 alleviates the myotube atrophic effect mediated by DEX via the activation of protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling. Through this pathway, BST204 suppresses the expression of muscle-specific E3 ubiquitin ligases contributing to the enhanced myotube formation and enlarged myotube diameter in DEX-treated myotubes. In addition, BST204 treatment significantly decreases the mitochondrial reactive oxygen species production in DEX-treated myotubes. Furthermore, BST204 improves mitochondrial function by upregulating the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) in DEX-induced myotube atrophy. This study provides a mechanistic insight into the effect of BST204 on DEX-induced myotube atrophy, suggesting that BST204 has protective effects against the toxicity of a corticosteroid drug in muscle and promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.


Reproduction ◽  
2021 ◽  
Vol 161 (5) ◽  
pp. 523-537
Author(s):  
Shi-Yu An ◽  
Zi-Fei Liu ◽  
El-Samahy M A ◽  
Ming-Tian Deng ◽  
Xiao-Xiao Gao ◽  
...  

Long ncRNAs regulate a complex array of fundamental biological processes, while its molecular regulatory mechanism in Leydig cells (LCs) remains unclear. In the present study, we established the lncRNA LOC102176306/miR-1197-3p/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) regulatory network by bioinformatic prediction, and investigated its roles in goat LCs. We found that lncRNA LOC102176306 could efficiently bind to miR-1197-3p and regulate PPARGC1A expression in goat LCs. Downregulation of lncRNA LOC102176306 significantly supressed testosterone (T) synthesis and ATP production, decreased the activities of antioxidant enzymes and mitochondrial complex I and complex III, caused the loss of mitochondrial membrane potential, and inhibited the proliferation of goat LCs by decreasing PPARGC1A expression, while these effects could be restored by miR-1197-3p inhibitor treatment. In addition, miR-1197-3p mimics treatment significantly alleviated the positive effects of lncRNA LOC102176306 overexpression on T and ATP production, antioxidant capacity and proliferation of goat LCs. Taken together, lncRNA LOC102176306 functioned as a sponge for miR-1197-3p to maintain PPARGC1A expression, thereby affecting the steroidogenesis, cell proliferation and oxidative stress of goat LCs. These findings extend our understanding of the molecular mechanisms of T synthesis, cell proliferation and oxidative stress of LCs.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Yan ◽  
Si-Chi Xu ◽  
Chun-Yan Kong ◽  
Xiao-Yang Zhou ◽  
Zhou-Yan Bian ◽  
...  

Background. Oxidative stress, inflammation and cardiac apoptosis were closely involved in doxorubicin (DOX)-induced cardiac injury. Piperine has been reported to suppress inflammatory response and pyroptosis in macrophages. However, whether piperine could protect the mice against DOX-related cardiac injury remain unclear. This study aimed to investigate whether piperine inhibited DOX-related cardiac injury in mice. Methods. To induce DOX-related acute cardiac injury, mice in DOX group were intraperitoneally injected with a single dose of DOX (15 mg/kg). To investigate the protective effects of piperine, mice were orally treated for 3 weeks with piperine (50 mg/kg, 18:00 every day) beginning two weeks before DOX injection. Results. Piperine treatment significantly alleviated DOX-induced cardiac injury, and improved cardiac function. Piperine also reduced myocardial oxidative stress, inflammation and apoptosis in mice with DOX injection. Piperine also improved cell viability, and reduced oxidative damage and inflammatory factors in cardiomyocytes. We also found that piperine activated peroxisome proliferator-activated receptor-γ (PPAR-γ), and the protective effects of piperine were abolished by the treatment of the PPAR-γ antagonist in vivo and in vitro. Conclusions. Piperine could suppress DOX-related cardiac injury via activation of PPAR-γ in mice.


2014 ◽  
Vol 92 (9) ◽  
pp. 717-724 ◽  
Author(s):  
Ayman M. Mahmoud

The most important reason for the non-approval and withdrawal of drugs by the Food and Drug Administration is hepatotoxicity. Therefore, this study was undertaken to evaluate the protective effects of hesperidin against cyclophosphamide (CYP)-induced hepatotoxicity in Wistar rats. The rats received a single intraperitoneal dose of CYP of 200 mg/kg body mass, followed by treatment with hesperidin, orally, at doses of 25 and 50 mg/kg for 11 consecutive days. CYP induced hepatic damage, as evidenced by the significantly elevated levels of serum pro-inflammatory cytokines, serum transaminases, liver lipid peroxidation, and nitric oxide. As a consequence, there was reduced glutathione content, and the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were markedly reduced. In addition, CYP administration induced a considerable downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and upregulation of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) mRNA expression. Hesperidin, in a dose-dependent manner, rejuvenated the altered markers to an almost normal state. In conclusion, hesperidin showed a potent protective effect against CYP-induced oxidative stress and inflammation leading to hepatotoxicity. The study suggests that hesperidin exerts its protective effect against CYP-induced hepatotoxicity through upregulation of hepatic PPARγ expression and abrogation of inflammation and oxidative stress.


Reproduction ◽  
2009 ◽  
Vol 138 (3) ◽  
pp. 493-505 ◽  
Author(s):  
Sarah Jansen ◽  
Kara Cashman ◽  
Jeremy G Thompson ◽  
Marie Pantaleon ◽  
Peter L Kaye

Ex vivotwo-cell mouse embryos deprived of glucosein vitrocan develop to blastocysts by increasing their pyruvate consumption; however, zygotes when glucose-deprived cannot adapt this metabolic profile and degenerate as morulae. Prior to their death, these glucose-deprived morulae exhibit upregulation of the H+-monocarboxylate co-transporter SLC16A7 and catalase, which partly co-localize in peroxisomes. SLC16A7 has been linked to redox shuttling for peroxisomal β-oxidation. Peroxisomal function is unclear during preimplantation development, but as a peroxisomal transporter in embryos, SLC16A7 may be involved and influenced by peroxisome proliferators such as peroxisome proliferator-activated receptor-α (PPARA). PCR confirmedPparamRNA expression in mouse embryos. Zygotes were cultured with or without glucose and with the PPARA-selective agonist WY14643 and the developing embryos assessed for expression of PPARA and phospho-PPARA in relation to the upregulation of SLC16A7 and catalase driven by glucose deprivation, indicative of peroxisomal proliferation. Reactive oxygen species (ROS) production and relationship to PPARA expression were also analysed. In glucose-deprived zygotes, ROS was elevated within 2 h, as were PPARA expression within 8 h and catalase and SLC16A7 after 12–24 h compared with glucose-supplied embryos. Inhibition of ROS production prevented this induction of PPARA and SLC16A7. Selective PPARA agonism with WY14643 also induced SLC16A7 and catalase expression in the presence of glucose. These data suggest that glucose-deprived cleavage stage embryos, although supplied with sufficient monocarboxylate-derived energy, undergo oxidative stress and exhibit elevated ROS, which in turn upregulates PPARA, catalase and SLC16A7 in a classical peroxisomal proliferation response.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fernanda Vacante ◽  
Pamela Senesi ◽  
Anna Montesano ◽  
Alice Frigerio ◽  
Livio Luzi ◽  
...  

Background. Metabolic alterations as hyperglycemia and inflammation induce myocardial molecular events enhancing oxidative stress and mitochondrial dysfunction. Those alterations are responsible for a progressive loss of cardiomyocytes, cardiac stem cells, and consequent cardiovascular complications. Currently, there are no effective pharmacological measures to protect the heart from these metabolic modifications, and the development of new therapeutic approaches, focused on improvement of the oxidative stress condition, is pivotal. The protective effects of levocarnitine (LC) in patients with ischemic heart disease are related to the attenuation of oxidative stress, but LC mechanisms have yet to be fully understood. Objective. The aim of this work was to investigate LC’s role in oxidative stress condition, on ROS production and mitochondrial detoxifying function in H9c2 rat cardiomyocytes during hyperglycemia. Methods. H9c2 cells in the hyperglycemic state (25 mmol/L glucose) were exposed to 0.5 or 5 mM LC for 48 and 72 h: LC effects on signaling pathways involved in oxidative stress condition were studied by Western blot and immunofluorescence analysis. To evaluate ROS production, H9c2 cells were exposed to H2O2 after LC pretreatment. Results. Our in vitro study indicates how LC supplementation might protect cardiomyocytes from oxidative stress-related damage, preventing ROS formation and activating antioxidant signaling pathways in hyperglycemic conditions. In particular, LC promotes STAT3 activation and significantly increases the expression of antioxidant protein SOD2. Hyperglycemic cardiac cells are characterized by impairment in mitochondrial dysfunction and the CaMKII signal: LC promotes CaMKII expression and activation and enhancement of AMPK protein synthesis. Our results suggest that LC might ameliorate metabolic aspects of hyperglycemic cardiac cells. Finally, LC doses herein used did not modify H9c2 growth rate and viability. Conclusions. Our novel study demonstrates that LC improves the microenvironment damaged by oxidative stress (induced by hyperglycemia), thus proposing this nutraceutical compound as an adjuvant in diabetic cardiac regenerative medicine.


2016 ◽  
Vol 38 (2) ◽  
pp. 696-713 ◽  
Author(s):  
Dan Yang ◽  
Haimei Chen ◽  
Xu Zeng ◽  
Ping Xie ◽  
Xincun Wang ◽  
...  

Background/Aims: Comparative gene identification-58 (CGI-58), an adipose triglyceride lipase (ATGL) coactivator, strongly promotes ATGL-mediated triglyceride (TG) catabolism. Beyond its function in promoting lipolysis, other features of CGI-58 have been proposed. Here, we investigated the role of CGI-58 in the regulation of inflammatory responsiveness in macrophages. Methods: Macrophage-specific GCI-58 transgenic mice (TG) and wild type mice (WT) were fed a high fat diet (HFD), and RAW264.7 cells were treated with lipopolysaccharide (LPS). The peroxisome proliferator-activated receptor (PPAR) signaling was detected. The inflammatory responsiveness and mitochondrial function were examined. Results: TG mice showed lower serum levels of proinflammatory cytokines and better mitochondrial function in macrophages compared with WT control. Knockdown of CGI-58 in RAW264.7 cells aggravated LPS-induced inflammation and mitochondrial dysfunction. CGI-58 overexpression and silencing in macrophages induced and inhibited PPARγ expression and activity, respectively. Most importantly, the PPARγ-specific agonist rosiglitazone significantly suppressed inflammation and mitochondrial dysfunction induced by CGI-58 deficiency. Furthermore, knockdown of PPARγ in macrophages significantly dampened the role of CGI-58 in suppression of inflammation and mitochondrial dysfunction. Interestingly, CGI-58 inhibited histone deacetylation and the recruitment of histone deacetylase (HDAC) to the PPARγ promoter. Finally, ATGL deficiency did not affect inflammatory responsiveness and PPARγ signaling in macrophages. Conclusion: These results demonstrate that macrophage CGI-58 enhances PPARγ signaling and thus suppresses inflammatory responsiveness and mitochondrial dysfunction.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xue Han ◽  
Daili Chen ◽  
Ning Liufu ◽  
Fengtao Ji ◽  
Qingshi Zeng ◽  
...  

Background. The heart is one of the most commonly affected organs during sepsis. Mitsugumin-53 (MG53) has attracted attention in research due to its cardioprotective function. However, the role of MG53 in sepsis-induced myocardial dysfunction (SIMD) remains unknown. The purpose of this study was to explore the underlying mechanism of MG53 in SIMD and investigate its potential relationship with peroxisome proliferator-activated receptor-α (PPARα). Methods. The cecal ligation and puncture (CLP) model was created to induce SIMD in rats. Protein levels of MG53 and PPARα, cardiac function, cardiomyocyte injury, myocardial oxidative stress and inflammatory indicators, and cardiomyocyte apoptosis were measured at 18 h after CLP. The effects of MG53 on PPARα in SIMD were investigated via preconditioning recombinant human MG53 (rhMG53) and PPARα antagonist GW6471. Results. The expression of MG53 and PPARα sharply decreased in the myocardium at 18 h after CLP. Compared with the sham group, cardiac function was significantly depressed, which was associated with the destructed myocardium, upregulated oxidative stress indicators and proinflammatory cytokines, and excessive cardiomyocyte apoptosis in the CLP group. Supplementation with rhMG53 enhanced myocardial MG53, increased the survival rate with improved cardiac function, and reduced oxidative stress, inflammation, and myocardial apoptosis, which were associated with PPARα upregulation. Pretreatment with GW6471 abolished the abovementioned protective effects induced by MG53. Conclusions. Both MG53 and PPARα were downregulated after sepsis shock. MG53 supplement protects the heart against SIMD by upregulating PPARα expression. Our results provide a new treatment strategy for SIMD.


Sign in / Sign up

Export Citation Format

Share Document