scholarly journals Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-α (PPARA) cause peroxisome proliferation in preimplantation mouse embryos

Reproduction ◽  
2009 ◽  
Vol 138 (3) ◽  
pp. 493-505 ◽  
Author(s):  
Sarah Jansen ◽  
Kara Cashman ◽  
Jeremy G Thompson ◽  
Marie Pantaleon ◽  
Peter L Kaye

Ex vivotwo-cell mouse embryos deprived of glucosein vitrocan develop to blastocysts by increasing their pyruvate consumption; however, zygotes when glucose-deprived cannot adapt this metabolic profile and degenerate as morulae. Prior to their death, these glucose-deprived morulae exhibit upregulation of the H+-monocarboxylate co-transporter SLC16A7 and catalase, which partly co-localize in peroxisomes. SLC16A7 has been linked to redox shuttling for peroxisomal β-oxidation. Peroxisomal function is unclear during preimplantation development, but as a peroxisomal transporter in embryos, SLC16A7 may be involved and influenced by peroxisome proliferators such as peroxisome proliferator-activated receptor-α (PPARA). PCR confirmedPparamRNA expression in mouse embryos. Zygotes were cultured with or without glucose and with the PPARA-selective agonist WY14643 and the developing embryos assessed for expression of PPARA and phospho-PPARA in relation to the upregulation of SLC16A7 and catalase driven by glucose deprivation, indicative of peroxisomal proliferation. Reactive oxygen species (ROS) production and relationship to PPARA expression were also analysed. In glucose-deprived zygotes, ROS was elevated within 2 h, as were PPARA expression within 8 h and catalase and SLC16A7 after 12–24 h compared with glucose-supplied embryos. Inhibition of ROS production prevented this induction of PPARA and SLC16A7. Selective PPARA agonism with WY14643 also induced SLC16A7 and catalase expression in the presence of glucose. These data suggest that glucose-deprived cleavage stage embryos, although supplied with sufficient monocarboxylate-derived energy, undergo oxidative stress and exhibit elevated ROS, which in turn upregulates PPARA, catalase and SLC16A7 in a classical peroxisomal proliferation response.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chiara Cipollina

Dietary omega-3 polyunsaturated fatty acids (PUFAs) are beneficial for a number of conditions ranging from cardiovascular disease to chronic airways disorders, neurodegeneration, and cancer. Growing evidence has shown that bioactive oxygenated derivatives are responsible for transducing these salutary effects. Electrophilic oxo-derivatives of omega-3 PUFAs represent a class of oxidized derivatives that can be generated via enzymatic and nonenzymatic pathways. Inflammation and oxidative stress favor the formation of these signaling species to promote the resolution of inflammation within a fine autoregulatory loop. Endogenous generation of electrophilic oxo-derivatives of omega-3 PUFAs has been observed inin vitroandex vivohuman models and dietary supplementation of omega-3 PUFAs has been reported to increase their formation. Due to the presence of anα,β-unsaturated ketone moiety, these compounds covalently and reversibly react with nucleophilic residues on target proteins triggering the activation of cytoprotective pathways, including the Nrf2 antioxidant response, the heat shock response, and the peroxisome proliferator activated receptorγ(PPARγ) and suppressing the NF-κB proinflammatory pathway. The endogenous nature of electrophilic oxo-derivatives of omega-3 PUFAs combined with their ability to simultaneously activate multiple cytoprotective pathways has made these compounds attractive for the development of new therapies for the treatment of chronic disorders and acute events characterized by inflammation and oxidative stress.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 736 ◽  
Author(s):  
Ian J. Villamagna ◽  
Danielle M. McRae ◽  
Aneta Borecki ◽  
Xueli Mei ◽  
François Lagugné-Labarthet ◽  
...  

Osteoarthritis (OA) is a debilitating joint disorder affecting more than 240 million people. There is no disease modifying therapeutic, and drugs that are used to alleviate OA symptoms result in side effects. Recent research indicates that inhibition of peroxisome proliferator-activated receptor δ (PPARδ) in cartilage may attenuate the development or progression of OA. PPARδ antagonists such as GSK3787 exist, but would benefit from delivery to joints to avoid side effects. Described here is the loading of GSK3787 into poly(ester amide) (PEA) particles. The particles contained 8 wt.% drug and had mean diameters of about 600 nm. Differential scanning calorimetry indicated the drug was in crystalline domains in the particles. Atomic force microscopy was used to measure the Young’s moduli of individual particles as 2.8 MPa. In vitro drug release studies showed 11% GSK3787 was released over 30 days. Studies in immature murine articular cartilage (IMAC) cells indicated low toxicity from the drug, empty particles, and drug-loaded particles and that the particles were not taken up by the cells. Ex vivo studies on murine joints showed that the particles could be injected into the joint space and resided there for at least 7 days. Overall, these results indicate that GSK3787-loaded PEA particles warrant further investigation as a delivery system for potential OA therapy.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Yan ◽  
Si-Chi Xu ◽  
Chun-Yan Kong ◽  
Xiao-Yang Zhou ◽  
Zhou-Yan Bian ◽  
...  

Background. Oxidative stress, inflammation and cardiac apoptosis were closely involved in doxorubicin (DOX)-induced cardiac injury. Piperine has been reported to suppress inflammatory response and pyroptosis in macrophages. However, whether piperine could protect the mice against DOX-related cardiac injury remain unclear. This study aimed to investigate whether piperine inhibited DOX-related cardiac injury in mice. Methods. To induce DOX-related acute cardiac injury, mice in DOX group were intraperitoneally injected with a single dose of DOX (15 mg/kg). To investigate the protective effects of piperine, mice were orally treated for 3 weeks with piperine (50 mg/kg, 18:00 every day) beginning two weeks before DOX injection. Results. Piperine treatment significantly alleviated DOX-induced cardiac injury, and improved cardiac function. Piperine also reduced myocardial oxidative stress, inflammation and apoptosis in mice with DOX injection. Piperine also improved cell viability, and reduced oxidative damage and inflammatory factors in cardiomyocytes. We also found that piperine activated peroxisome proliferator-activated receptor-γ (PPAR-γ), and the protective effects of piperine were abolished by the treatment of the PPAR-γ antagonist in vivo and in vitro. Conclusions. Piperine could suppress DOX-related cardiac injury via activation of PPAR-γ in mice.


2019 ◽  
Vol 20 (8) ◽  
pp. 1862 ◽  
Author(s):  
Orlando ◽  
Chimienti ◽  
Pesce ◽  
Fracasso ◽  
Lezza ◽  
...  

Dietary gliadin may show a broad spectrum of toxicity. The interplay between mitochondria and gliadin-induced oxidative stress has not been thoroughly examined in the intestinal epithelium. In this kinetic study, Caco-2 cells were exposed for 24 h to pepsin-trypsin-digested gliadin, alone or in combination with the antioxidant 2,6-di-tbutyl-p-cresol (BHT), and the effects on mitochondrial biogenesis and mtDNA were studied. Cells ability to recover from stress was determined after 24 h and 48 h of incubation in the culture medium. Gliadin-induced oxidative stress evoked a compensatory response. The stressor triggered a rapid and significant increase of Peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α) and Peroxiredoxin III (PrxIII) proteins, and mtDNA amount. As for the effects of gliadin on mtDNA integrity, strand breaks, abasic sites, and modified bases were analyzed in three mtDNA regions. D-loop appeared a more fragile target than Ori-L and ND1/ND2. The temporal trend of the damage at D-loop paralleled that of the amount of mtDNA. Overall, a trend toward control values was shown 48 h after gliadin exposure. Finally, BHT was able to counteract the effects of gliadin. Results from this study highlighted the effects of gliadin-induced oxidative stress on mitochondria, providing valuable evidence that might improve the knowledge of the pathophysiology of gluten-related disorders.


2019 ◽  
Vol 317 (6) ◽  
pp. C1213-C1228 ◽  
Author(s):  
Blas A. Guigni ◽  
Dennis K. Fix ◽  
Joseph J. Bivona ◽  
Bradley M. Palmer ◽  
James A. Carson ◽  
...  

Muscle contraction may protect against the effects of chemotherapy to cause skeletal muscle atrophy, but the mechanisms underlying these benefits are unclear. To address this question, we utilized in vitro modeling of contraction and mechanotransduction in C2C12 myotubes treated with doxorubicin (DOX; 0.2 μM for 3 days). Myotubes expressed contractile proteins and organized these into functional myofilaments, as electrical field stimulation (STIM) induced intracellular calcium (Ca2+) transients and contractions, both of which were prevented by inhibition of membrane depolarization. DOX treatment reduced myotube myosin content, protein synthesis, and Akt (S308) and forkhead box O3a (FoxO3a; S253) phosphorylation and increased muscle RING finger 1 (MuRF1) expression. STIM (1 h/day) prevented DOX-induced reductions in myotube myosin content and Akt and FoxO3a phosphorylation, as well as increases in MuRF1 expression, but did not prevent DOX-induced reductions in protein synthesis. Inhibition of myosin-actin interaction during STIM prevented contraction and the antiatrophic effects of STIM without affecting Ca2+ cycling, suggesting that the beneficial effect of STIM derives from mechanotransductive pathways. Further supporting this conclusion, mechanical stretch of myotubes recapitulated the effects of STIM to prevent DOX suppression of FoxO3a phosphorylation and upregulation of MuRF1. DOX also increased reactive oxygen species (ROS) production, which led to a decrease in mitochondrial content. Although STIM did not alter DOX-induced ROS production, peroxisome proliferator-activated receptor-γ coactivator-1α and antioxidant enzyme expression were upregulated, and mitochondrial loss was prevented. Our results suggest that the activation of mechanotransductive pathways that downregulate proteolysis and preserve mitochondrial content protects against the atrophic effects of chemotherapeutics.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3011-3020 ◽  
Author(s):  
Youcai Tang ◽  
Shizhong Zheng ◽  
Anping Chen

Nonalcoholic steatohepatitis (NASH) is commonly found in patients with obesity and is often accompanied with abnormally elevated levels of plasma leptin, i.e. hyperleptinemia. A relatively high population of NASH patients develops hepatic fibrosis, even cirrhosis. Hepatic stellate cells (HSCs) are the major effector cells during liver fibrogenesis and could be activated by leptin. The antioxidant curcumin, a phytochemical from turmeric, has been shown to suppress HSC activation in vitro and in vivo. This project is to evaluate the effect of curcumin on leptin-induced HSC activation and to elucidate the underlying mechanisms. We hypothesize that curcumin abrogates the stimulatory effect of leptin on HSC activation by interrupting leptin signaling and attenuating leptin-induced oxidative stress. Curcumin eliminates the stimulatory effects of leptin on regulating expression of genes closely relevant to HSC activation. Curcumin interrupts leptin signaling by reducing phosphorylation levels of leptin receptor (Ob-R) and its downstream intermediators. In addition, curcumin suppresses gene expression of Ob-R in HSCs, which requires the activation of endogenous peroxisome proliferator-activated receptor-γ and de novo synthesis of glutathione. In conclusion, our results demonstrate that curcumin abrogates the stimulatory effect of leptin on HSC activation in vitro by reducing the phosphorylation level of Ob-R, stimulating peroxisome proliferator-activated receptor-γ activity, and attenuating oxidative stress, leading to the suppression of Ob-R gene expression and interruption of leptin signaling. These results provide novel insights into therapeutic mechanisms of curcumin in inhibiting HSC activation and intervening liver fibrogenesis associated with hyperleptinemia in NASH patients.


2017 ◽  
Author(s):  
Chao Song ◽  
Jiamin Zhao ◽  
Jingcheng Zhang ◽  
Tingchao Mao ◽  
Beibei Fu ◽  
...  

AbstractOxidative stress induced by fluoride (F) is associated with fluorosis formation, but the underlying molecular mechanism remains unclear. In this study, Melatonin pretreatment suppressed F-induced hepatocyte injury in HepG2 cells. Melatonin increases the activity of superoxide dismutase (SOD2) by enhancing sirtuin 3 (SIRT3)-mediated deacetylation and promotes SOD2 gene expression via SIRT3-regulated DNA-binding activity of forkhead box O3 (FoxO3a), indicating that melatonin markedly enhanced mROS scavenging in F-exposed HepG2 cells. Notably, melatonin activated the peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α). PGC-1α interacted with the estrogen-related receptor alpha (ERRα) bound to the SIRT3 promoter, where it functions as a transcription factor to regulate SIRT3 expression. Furthermore, daily injection of melatonin for 30 days inhibited F-induced oxidative stress in mice liver, leading to improvement of liver function. Mechanistic study revealed that the protective effects of melatonin were associated with down-regulation of JNK1/2 phosphorylation in vitro and in vivo. Collectively, our data suggest a novel role of melatonin in preventing F-induced oxidative stress through activation of the SIRT3 pathway.


2008 ◽  
Vol 294 (5) ◽  
pp. E898-E909 ◽  
Author(s):  
Kazuto Takahashi ◽  
Shinya Yamaguchi ◽  
Tatsuhiro Shimoyama ◽  
Hiroyuki Seki ◽  
Kaoru Miyokawa ◽  
...  

Obese conditions increase the expression of adipocytokine monocyte chemoattractant protein-1 (MCP-1) in adipose tissue as well as MCP-1 plasma levels. To investigate the mechanism behind increased MCP-1, we used a model in which 3T3-L1 adipocytes were artificially hypertrophied by preloading with palmitate in vitro. As observed in obesity, under our model conditions, palmitate-preloaded cells showed significantly increased oxidative stress and increased MCP-1 expression relative to control cells. This increased MCP-1 expression was enhanced by adding exogenous tumor necrosis factor-α (TNF-α; 17.8-fold vs. control cells, P < 0.01) rather than interleukin-1β (IL-1β; 2.6-fold vs. control cells, P < 0.01). However, endogenous TNF-α and IL-1β release was not affected in hypertrophied cells, suggesting that these endogenous cytokines do not mediate hypertrophy-induced increase in MCP-1. MCP-1 secretion from hypertrophied cells was significantly decreased by treatment with antioxidant N-acetyl-cysteine, JNK inhibitors SP600125 and JIP-1 peptide, and IκB phosphorylation inhibitors BAY 11-7085 and BMS-345541 ( P < 0.01). MCP-1 secretion was not affected by peroxisome proliferator-activated receptor-γ (PPARγ) antagonists assayed. Adiponectin, another adipocytokine studied in parallel, also showed increased release in hypertrophy relative to control cells. But in contrast to MCP-1, adiponectin release was significantly suppressed by both exogenous TNF-α and IL-1β as well as by PPARγ antagonists bisphenol A diglycidyl ether and T0070907 ( P < 0.01). JNK inhibitors and IκB phosphorylation inhibitors showed no significant effect on adiponectin. We conclude that adipocyte hypertrophy through palmitate loading causes oxidative stress, which in turn increases MCP-1 expression and secretion through JNK and IκB signaling. In contrast, the parallel increase in adiponectin expression appears to be related to the PPARγ ligand properties of palmitate.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Eunhui Seo ◽  
Yoon Sin Oh ◽  
Donghee Kim ◽  
Mi-Young Lee ◽  
Sungwook Chae ◽  
...  

The accumulation of oxidative damage and mitochondrial dysfunction is an important factor that contributes to aging. ThePsoralea corylifoliaseeds (PCS), commonly known as “Boh-Gol-Zhee” in Korea, have been used traditionally as a medicinal remedy. We investigated whether an extract of PCS has protective effects on oxidative stress and mitochondrial function in hepatocytes. The PCS extract showed an antisenescence effect on human diploid fibroblasts as evidenced by a decreased expression ofp16INK4amRNA and senescence-associatedβ-galactosidase staining. PCS extract treatment reduced H2O2-induced reactive oxygen species (ROS) production in HepG2 cells, inhibited ROS production in hepatocytes of aged mice, and increased superoxide dismutase activity. In H2O2-treated HepG2 cells, PCS extract treatment recovered ATP production. PCS extract treatment recovered the oxygen consumption rate and inhibited reduction of mitochondrial membrane potential induced by oxidative stress, suggesting improvement of mitochondrial function. In addition, PCS extract treatment recovered peroxisome proliferator-activated receptorγcoactivator 1αand carnitine palmitoyltransferase 1 mRNA and protein expression, and inhibited mitochondrial genome damage. Treatment with the major component of PCS extract, bakuchiol, also recovered mitochondrial dysfunction. On the basis of these results, we conclude that PCS extract inhibits ROS production and mitochondrial dysfunction induced by oxidative stress in hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document