scholarly journals Navigating Traditional Chinese Medicine Network Pharmacology and Computational Tools

2013 ◽  
Vol 2013 ◽  
pp. 1-23 ◽  
Author(s):  
Ming Yang ◽  
Jia-Lei Chen ◽  
Li-Wen Xu ◽  
Guang Ji

The concept of “network target” has ushered in a new era in the field of traditional Chinese medicine (TCM). As a new research approach, network pharmacology is based on the analysis of network models and systems biology. Taking advantage of advancements in systems biology, a high degree of integration data analysis strategy and interpretable visualization provides deeper insights into the underlying mechanisms of TCM theories, including the principles of herb combination, biological foundations of herb or herbal formulae action, and molecular basis of TCM syndromes. In this study, we review several recent developments in TCM network pharmacology research and discuss their potential for bridging the gap between traditional and modern medicine. We briefly summarize the two main functional applications of TCM network models: understanding/uncovering and predicting/discovering. In particular, we focus on how TCM network pharmacology research is conducted and highlight different computational tools, such as network-based and machine learning algorithms, and sources that have been proposed and applied to the different steps involved in the research process. To make network pharmacology research commonplace, some basic network definitions and analysis methods are presented.

2012 ◽  
Vol 40 (06) ◽  
pp. 1109-1122 ◽  
Author(s):  
Xijun Wang ◽  
Aihua Zhang ◽  
Hui Sun ◽  
Ping Wang

Traditional Chinese medicine (TCM), an alternative medicine, focuses on the treatment of human disease via the integrity of the close relationship between body and syndrome analysis. It remains a form of primary care in most Asian countries and its characteristics showcase the great advantages of personalized medicine. Although this approach to disease diagnosis, prognosis and treatment has served the medical establishment well for thousands of years, it has serious shortcomings in the era of modern medicine that stem from its reliance on reductionist principles of experimentation and analysis. In this way, systems biology offers the potential to personalize medicine, facilitating the provision of the right care to the right patient at the right time. We expect that systems biology will have a major impact on future personalized therapeutic approaches which herald the future of medicine. Here we summarize current trends and critically review the potential limitations and future prospects of such treatments. Some characteristic examples are presented to highlight the application of this groundbreaking platform to personalized TCM as well as some of the necessary milestones for moving systems biology of a state-of-the-art nature into mainstream health care.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuyue Wang ◽  
Fei Guo ◽  
Xiaochen Sun ◽  
Xiao Song ◽  
Yaohui Yuan ◽  
...  

Background. Hypertensive vascular remodeling (HVR) is the pathophysiological basis of hypertension, which is also an important cause of vascular disease and target organ damage. Treatment with Fructus Tribuli (FT), a traditional Chinese medicine, has a positive effect on HVR. However, the pharmacological mechanisms of FT are still unclear. Therefore, this study aimed to reveal the potential mechanisms involved in the effects of FT on HVR based on network pharmacology and molecular docking. Materials and Methods. We selected the active compounds and targets of FT according to the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Swiss Target Prediction database, and the targets of HVR were collected from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and DrugBank databases. The protein-protein interaction network (PPI) was established using the STRING database. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and network analysis were performed to further explore the potential mechanisms. Finally, molecular docking methods were used to evaluate the affinity between the active compounds and the main target. Results. Seventeen active compounds of FT  and 164 potential targets for the treatment of HVR were identified. Component-target and PPI networks were constructed, and 12 main active components and 33 main targets were identified by analyzing the topological parameters. Additionally, GO analysis indicated that the potential targets were enriched in 483 biological processes, 52 cellular components, and 110 molecular functions. KEGG analysis revealed that the potential targets were correlated with 122 pathways, such as the HIF-1 signaling pathway, ErbB signaling pathway, and VEGF signaling pathway. Finally, molecular docking showed that the 12 main active components had a good affinity for the top five main targets. Conclusion. This study demonstrated the multiple compounds, targets, and pathway characteristics of FT in the treatment of HVR. The network pharmacology method provided a novel research approach to analyze potential mechanisms.


2021 ◽  
Author(s):  
Yinyin Wang ◽  
Hongbin Yang ◽  
Linxiao Chen ◽  
Mohieddin Jafari ◽  
Jing Tang

AbstractTraditional Chinese Medicine (TCM) has been practiced for thousands of years for treating human diseases. In comparison to modern medicine, one of the advantages of TCM is the principle of herb compatibility, known as TCM formulae. A TCM formula usually consists of multiple herbs to achieve the maximum treatment effects, where their interactions are believed to elicit the therapeutic effects. Despite being a fundamental component of TCM, the rationale of combining specific herb combinations remains unclear. In this study, we proposed a network-based method to quantify the interactions in herb pairs. We constructed a protein-protein interaction network for a given herb pair by retrieving the associated ingredients and protein targets, and determined multiple network-based distances including the closest, shortest, center, kernel, and separation, both at the ingredient and at the target levels. We found that the frequently used herb pairs tend to have shorter distances compared to random herb pairs, suggesting that a therapeutic herb pair is more likely to affect neighboring proteins in the human interactome. Furthermore, we found that the center distance determined at the ingredient level improves the discrimination of top-frequent herb pairs from random herb pairs, suggesting the rationale of considering the topologically important ingredients for inferring the mechanisms of action of TCM. Taken together, we have provided a network pharmacology framework to quantify the degree of herb interactions, which shall help explore the space of herb combinations more effectively to identify the synergistic compound interactions based on network topology.


2020 ◽  
Author(s):  
Xiaoguang Li

Modern medicine tells us that the human body is an organism composed of heart, lung, liver, kidney, spleen, stomach, brain, nerves, muscles, bones, blood vessels, blood and so on, while traditional Chinese medicine believes that besides these tissues and organs, the human body still has another part of the structure, traditional Chinese medicine calls them Jing Luo and Shu Xue. Jing Luo means the longitudinal line of the human body and the accompanying net, translated into English Meridians and Collaterals. Shu Xue means holes distributed on Jing Luo and outside Jing Luo, because stimulating Shu Xue's position by acupuncture, massage and other methods can cure diseases, so Shu Xue is translated into English acupuncture point, abbreviated as acupoint or point. Meridians and acupoints are the special knowledge of human body structure in traditional Chinese medicine. Traditional Chinese medicine not only draws the distribution map of the meridians and acupoints in the human body, but also has been using them to treat diseases for thousands of years. There are hundreds of these acupoints, stimulating each one by acupuncture, massage or other methods will have a special effect on the human body and can treat various diseases. But what effect does stimulating every acupoint have on the human body so that it can treat various diseases? The discussion of traditional Chinese medicine is vague and incomprehensible, and can not be proved by experiments. According to the author's research for more than 30 years, this paper makes a clear and accurate exposition of the effects on the human body and diseases that can be treated with acupoint massage. These statements can be proved by experiments, so they are believed to be reliable. It is hoped that meridians, acupoints and massage therapy can be incorporated into modern medicine and become a part of modern medicine after being proved by others through experiments. Massaging acupoints can not only treat many diseases that are difficult to be treated with drugs, but also have simple methods and low cost.


2020 ◽  
Vol 7 (2) ◽  
pp. 89-94
Author(s):  
Jianjun Sun

The COVID-19 pandemic has caused millions of infections and hundreds of thousands deaths in the world. The pandemic is still ongoing and no specific antivirals have been found to control COVID-19. The integration of Traditional Chinese Medicine with supportive measures of Modern Medicine has reportedly played an important role in the control of COVID-19 in China. This review summarizes the evidence of TCM in the treatment of COVID-19 and discusses the plausible mechanism of TCM in control of COVID-19 and other viral infectious diseases.


2011 ◽  
Vol 39 (5) ◽  
pp. 1348-1352 ◽  
Author(s):  
Xuan Liu ◽  
De-An Guo

Systems biology is considered to be the possible technology that could bring breakthroughs in the study of TCM (traditional Chinese medicine). Proteomics, as one of the major components of systems biology, has been used in the mechanistic study of TCM, providing some interesting results. In the present paper, we review the current application of proteomics in the mechanistic study of TCM. Proteomics technologies and strategies that might be used in the future to improve study of TCM are also discussed.


Introduction: Plasma cell mastitis is a rare benign suppurative disease of the breast based on the dilatation of mammary ducts and infiltration of plasma cells. Modern medicine focuses on surgical treatment. It is easy to recur after operation. Xiaojin Pill with natural musk is a oral traditional Chinese medicine and plays a role in benign breast diseases. There are very few reports on the use of Xiaojin Pill with natural musk in treating plasma cell mastitis yet. Cases: This paper reports 3 cases of plasma cell mastitis who received Xiaojin Pill with natural musk treatment. Patients were successfully treated after accepting Xiaojin Pill with natural musk for several weeks.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shuhan Zhou ◽  
Yanjun Duan ◽  
Yu Deng ◽  
Miao Wang ◽  
Chaoqun Huang ◽  
...  

Chronic gastritis (CG) places a considerable burden on the healthcare system worldwide. Traditional Chinese Medicine (TCM) formulas characterized by multicompounds and multitargets have been acknowledged with striking effects in the treatment of CG in China’s history. Nevertheless, their accurate mechanisms of action are still ambiguous. In this study, we analyzed the effective compounds, potential targets, and related biological pathway of Lianpu Drink (LPD), a TCM formula which has been reported to have a therapeutic effect on CG, by contrasting a “compound-target-disease” network. According to the results, 92 compounds and 5762 putative targets of LPD were screened; among them, 8 compounds derived from different herbs in LPD and 30 common targets related to LPD and CG were selected as candidate compounds and precision targets, respectively. Meanwhile, the predicted common targets were verified by Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis and pharmacological experiments. The results demonstrated that quercetin, ephedrine, trigonelline, crocetin, and β-sitosterol were major effective compounds of LPD responsible for the CG treatment by inhibiting the activation of the JAK 2-STAT 3 signaling pathway to reduce the expressions of cyclin D1 and Bcl-2 proteins. The study provides evidence for the mechanism of understanding of LPD for the treatment of CG.


Sign in / Sign up

Export Citation Format

Share Document