scholarly journals A Schistosomiasis Model with Mating Structure

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Longxing Qi ◽  
Jing-an Cui

A schistosomiasis model is proposed including single schistosomes, paired schistosomes, snails, and the latent period of infected snails. A reasonable sex ratio of schistosomes and the minimum mating function are considered. A threshold condition determining the stability of the system is given, and the stability of equilibrium for the model is shown. The impact of the latent period of infected snails on schistosomiasis transmission can be found through numerical simulations. Finally, preferable control strategies are obtained by sensitivity analyses. Killing snails may be the preferred control measure. If we choose chemotherapy, we should use some drugs which are sufficient for reducing egg-associated pathology, since paired schistosomes are mostly harmful to definitive hosts.

PLoS Medicine ◽  
2021 ◽  
Vol 18 (4) ◽  
pp. e1003585
Author(s):  
Kyra H. Grantz ◽  
Elizabeth C. Lee ◽  
Lucy D’Agostino McGowan ◽  
Kyu Han Lee ◽  
C. Jessica E. Metcalf ◽  
...  

Background Test-trace-isolate programs are an essential part of Coronavirus Disease 2019 (COVID-19) control that offer a more targeted approach than many other nonpharmaceutical interventions. Effective use of such programs requires methods to estimate their current and anticipated impact. Methods and findings We present a mathematical modeling framework to evaluate the expected reductions in the reproductive number, R, from test-trace-isolate programs. This framework is implemented in a publicly available R package and an online application. We evaluated the effects of completeness in case detection and contact tracing and speed of isolation and quarantine using parameters consistent with COVID-19 transmission (R0: 2.5, generation time: 6.5 days). We show that R is most sensitive to changes in the proportion of cases detected in almost all scenarios, and other metrics have a reduced impact when case detection levels are low (<30%). Although test-trace-isolate programs can contribute substantially to reducing R, exceptional performance across all metrics is needed to bring R below one through test-trace-isolate alone, highlighting the need for comprehensive control strategies. Results from this model also indicate that metrics used to evaluate performance of test-trace-isolate, such as the proportion of identified infections among traced contacts, may be misleading. While estimates of the impact of test-trace-isolate are sensitive to assumptions about COVID-19 natural history and adherence to isolation and quarantine, our qualitative findings are robust across numerous sensitivity analyses. Conclusions Effective test-trace-isolate programs first need to be strong in the “test” component, as case detection underlies all other program activities. Even moderately effective test-trace-isolate programs are an important tool for controlling the COVID-19 pandemic and can alleviate the need for more restrictive social distancing measures.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4183 ◽  
Author(s):  
Chao Xiao ◽  
Wei Han ◽  
Jinxin Ouyang ◽  
Xiaofu Xiong ◽  
Wei Wang

Continuous commutation failures (CFs) are serious malfunctions in line-commutated converter high-voltage direct current (HVDC) systems that cause the continuous and rapid sag of transmitted power and may threaten the stability of AC systems. The conventional emergency control strategies of AC systems exhibit difficulty in responding quickly and accurately. After suffering from continuous CFs, the forced blocking of direct current (DC) converter to prevent AC system instability might also cause other adverse effects. This study proposes a ride-through control method to improve the endurance capability of AC systems against continuous CFs. An active power output model of inverter station under continuous CFs is built, while considering the process and mechanism of CFs. The impact of continuous DC power sag on the stability of sending-end system is analyzed through a four-area AC/DC equivalent model. A rolling calculation model for the power angle and acceleration area variations of the sending-end system during continuous CFs is established on the basis of model predictive control theory. A calculation method for the emergency power control reference is obtained by using the aforementioned models. Lastly, a ride-through control method for continuous CFs is developed by utilizing the emergency control of adjacent HVDC link. Simulation results show that the proposed control method can improve the endurance capability of an AC system to continuous CFs and reduce blocking risk in an HVDC link.


2021 ◽  
Author(s):  
Ángel G. C. Pérez ◽  
David Adeyemi Oluyori

In this study, we propose and analyze an extended SEIARD model with vaccination. We compute the control reproduction number Rc of our model and study the stability of equilibria. We show that the set of disease-free equilibria is locally asymptotically stable when Rc<1 and unstable when Rc>1, and we provide a sufficient condition for its global stability. Furthermore, we perform numerical simulations using the reported data of COVID-19 infections and vaccination in Mexico to study the impact of different vaccination, transmission and efficacy rates on the dynamics of the disease.


Author(s):  
Ángel G. C. Pérez ◽  
David A. Oluyori

In this study, we propose and analyse an extended SEIARD model with vaccination. We compute the control reproduction number $\mathcal{R}_c$ of our model and study the stability of equilibria. We show that the set of disease-free equilibria is locally asymptotically stable when $\mathcal{R}_c<1$ and unstable when $\mathcal{R}_c>1$, and we provide a sufficient condition for its global stability. Furthermore, we perform numerical simulations using the reported data of COVID-19 infections and vaccination in Mexico to study the impact of different vaccination, transmission and efficacy rates on the dynamics of the disease.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5567
Author(s):  
Marek Jendryś ◽  
Stanisław Duży ◽  
Grzegorz Dyduch

Rock mass is a medium created through processes that have lasted over four billion years, and its intrinsic feature is the variability of the parameters that describe it. A particularly high variability of mechanical parameters is observed in Carboniferous sedimentary and metamorphic rocks. The mechanical properties, especially the rock mass strength, are essential for the design and maintenance of the stability of excavations conducted in it and for the safe conduct of mining operations. This article presents the test results confirming the random variability of the mechanical parameters of the rock mass. The second part of the article presents the results of numerical simulations mapping the Carboniferous rock mass along with a 1000 m deep tunnel excavation protected by steel arch supports. Numerical simulations were carried out for models with different variability coefficients of strength and deformation parameters, and the obtained results were analyzed in terms of damage zones and rock mass stress state as well as axial forces in the modelled supports. The results of the simulation demonstrate the impact of the variability of rock mass properties on its state in the vicinity of the excavation and, consequently, on the internal forces in the steel supports and their uneven loading along the length of the excavation. This fact should be taken into account in their design.


2013 ◽  
Vol 418 ◽  
pp. 84-87
Author(s):  
Chang Jin Xu ◽  
Pei Luan Li

In this paper, a four-dimensional (4D) autonomous hyperchaotic system is dealt with. The stability criteria of equilibria of the controlled hyperchaotic chaotic system are established. Using the dislocated feedback control, enhancing feedback control, and nonlinear function feedback control methods, the chaos of the 4D hyperchaotic system can be suppressed to unstable equilibrium. Some numerical simulations revealing the effectiveness of our control strategies are given..


2020 ◽  
Author(s):  
Kyra H Grantz ◽  
Elizabeth C Lee ◽  
Lucy D'Agostino McGowan ◽  
Kyu Han Lee ◽  
C. Jessica E. Metcalf ◽  
...  

Background: Test-trace-isolate programs are an essential part of COVID-19 control that offer a more targeted approach than many other non-pharmaceutical interventions. Effective use of such programs requires methods to estimate their current and anticipated impact. Methods and Findings: We present a mathematical modeling framework to evaluate the expected reductions in the reproductive number, R, from test-trace-isolate programs. This framework is implemented in a publicly available R package and an online application. We evaluated the effects of case detection, speed of isolation, contact tracing completeness and speed of quarantine using parameters consistent with COVID-19 transmission (R0=2.5, generation time 6.5 days). We show that R is most sensitive to changes to the proportion of infections detected in almost all scenarios, and other metrics have a reduced impact when case detection levels are low (<30%). Although test-trace-isolate programs can contribute substantially to reducing R, exceptional performance across all metrics is needed to bring R below one through test-trace-isolate alone, highlighting the need for comprehensive control strategies. Formally framing the dynamical process also indicates that metrics used to evaluate performance of test-trace-isolate, such as the proportion of identified infections among traced contacts, may be misleading. While estimates of program performance are sensitive to assumptions about COVID-19 natural history, our qualitative findings are robust across numerous sensitivity analyses. Conclusions: Effective test-trace-isolate programs first need to be strong in the "test" component, as case detection underlies all other program activities. Even moderately effective test-trace-isolate programs are an important tool for controlling the COVID-19 pandemic, and can alleviate the need for more restrictive social distancing measures.


2020 ◽  
Vol 51 (4) ◽  
pp. 261-287
Author(s):  
Shaibu Osman ◽  
Oluwole Daniel Makinde ◽  
David Mwangi Theuri

Listeriosis is a serious disease caused by the germ Listeria monocytogenes. People usually become ill with listeriosis after eating contaminated food including meat. The disease primarily affects pregnant women, newborns, older adults, and people with weakened immune systems. In this paper, we propose and scrutinize a model problem describing the transmission dynamics of Listeriosis epidemic in animal and human population using the stability theory of differential equations. The model is qualitatively analysed for the basic reproduction number as well as possibility of forward and backward bifurcation with respect to the stability of disease free and endemic equilibria. The impact of the model parameters on the disease was evaluated via sensitivity analysis. An extension of the model to include time dependent control variables such as treatment, vaccination and education of susceptible (human) is carried out. Using Pontryagin’s Maximum Principle, we obtain the optimal control strategies needed for combating Listeriosis disease. Numerical simulation of the model is performed and pertinent results are displayed graphically and discussed quantitatively.


2021 ◽  
Vol 16 ◽  
pp. 735-754
Author(s):  
Eshetu Dadi Gurmu ◽  
Boka Kumsa Bola ◽  
Purnachandra Rao Koya

In this study, a nonlinear deterministic mathematical model of Human Papillomavirus was formulated. The model is studied qualitatively using the stability theory of differential equations. The model is analyzed qualitatively for validating the existence and stability of disease ¬free and endemic equilibrium points using a basic reproduction number that governs the disease transmission. It's observed that the model exhibits a backward bifurcation and the sensitivity analysis is performed. The optimal control problem is designed by applying Pontryagin maximum principle with three control strategies viz. prevention strategy, treatment strategy, and screening strategy. Numerical results of the optimal control model reveal that a combination of prevention, screening, and treatment is the most effective strategy to wipe out the disease in the community.


2021 ◽  
Vol 13 (12) ◽  
pp. 6923
Author(s):  
Ali M. Al-Shaery ◽  
Bilal Hejase ◽  
Abdessamad Tridane ◽  
Norah S. Farooqi ◽  
Hamad Al Jassmi

With the coronavirus (COVID-19) pandemic continuing to spread around the globe, there is an unprecedented need to develop different approaches to containing the pandemic from spreading further. One particular case of importance is mass-gathering events. Mass-gathering events have been shown to exhibit the possibility to be superspreader events; as such, the adoption of effective control strategies by policymakers is essential to curb the spread of the pandemic. This paper deals with modeling the possible spread of COVID-19 in the Hajj, the world’s largest religious gathering. We present an agent-based model (ABM) for two rituals of the Hajj: Tawaf and Ramy al-Jamarat. The model aims to investigate the effect of two control measures: buffers and face masks. We couple these control measures with a third control measure that can be adopted by policymakers, which is limiting the capacity of each ritual. Our findings show the impact of each control measure on the curbing of the spread of COVID-19 under the different crowd dynamics induced by the constraints of each ritual.


Sign in / Sign up

Export Citation Format

Share Document