scholarly journals Labisia pumilaUpregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Fazliana Mansor ◽  
Harvest F. Gu ◽  
Claes-Göran Östenson ◽  
Louise Mannerås-Holm ◽  
Elisabet Stener-Victorin ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects ofLabisia pumila(LP) standardized water extract on PPARgamma transcriptional activity in adipocytesin vitroandin vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP) and PCOS-control (1 mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100 μg/mL LP and compared to untreated control and 10 μM of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway.

2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110550
Author(s):  
Xing Wang ◽  
Shuchun Chen ◽  
Dan Lv ◽  
Zelin Li ◽  
Luping Ren ◽  
...  

Objective To investigate the effect of liraglutide on the browning of white fat and the suppression of obesity via regulating microRNA (miR)-27b in vivo and in vitro. Methods Sprague-Dawley rats were fed a high-fat (HF) diet and 3T3-L1 pre-adipocytes were differentiated into mature white adipocytes. Rats and mature adipocytes were then treated with different doses of liraglutide. The mRNA and protein levels of browning-associated proteins, including uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), CCAAT enhancer binding protein β (CEBPβ), cell death-inducing DFFA-like effector A (CIDEA) and peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α), were detected using quantitative real-time polymerase chain reaction and Western blotting. Results Liraglutide decreased body weight and reduced the levels of blood glucose, triglyceride and low-density lipoprotein cholesterol in HF diet-fed rats. Liraglutide increased the levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α in vivo and vitro. The levels of miR-27b were upregulated in HF diet-fed rats, whereas liraglutide reduced the levels of miR-27b. In vitro, overexpression of miR-27b decreased the mRNA and protein levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α. Transfection with the miR-27b mimics attenuated the effect of liraglutide on the browning of white adipocytes. Conclusion Liraglutide induced browning of white adipose through regulation of miR-27b.


2006 ◽  
Vol 291 (3) ◽  
pp. E536-E543 ◽  
Author(s):  
Chaodong Wu ◽  
Salmaan A. Khan ◽  
Li-Jen Peng ◽  
Honggui Li ◽  
Steven G. Carmella ◽  
...  

Hepatic insulin resistance is one of the characteristics of type 2 diabetes and contributes to the development of hyperglycemia. How changes in hepatic glucose flux lead to insulin resistance is not clearly defined. We determined the effects of decreasing the levels of hepatic fructose 2,6-bisphosphate (F26P2), a key regulator of glucose metabolism, on hepatic glucose flux in the normal 129J mice. Upon adenoviral overexpression of a kinase activity-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme that determines F26P2 level, hepatic F26P2 levels were decreased twofold compared with those of control virus-treated mice in basal state. In addition, under hyperinsulinemic conditions, hepatic F26P2 levels were much lower than those of the control. The decrease in F26P2 leads to the elevation of basal and insulin-suppressed hepatic glucose production. Also, the efficiency of insulin to suppress hepatic glucose production was decreased (63.3 vs. 95.5% suppression of the control). At the molecular level, a decrease in insulin-stimulated Akt phosphorylation was consistent with hepatic insulin resistance. In the low hepatic F26P2 states, increases in both gluconeogenesis and glycogenolysis in the liver are responsible for elevations of hepatic glucose production and thereby contribute to the development of hyperglycemia. Additionally, the increased hepatic gluconeogenesis was associated with the elevated mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1α and phospho enolpyruvate carboxykinase. This study provides the first in vivo demonstration showing that decreasing hepatic F26P2 levels leads to increased gluconeogenesis in the liver. Taken together, the present study demonstrates that perturbation of glucose flux in the liver plays a predominant role in the development of a diabetic phenotype, as characterized by hepatic insulin resistance.


2011 ◽  
Vol 301 (6) ◽  
pp. L881-L891 ◽  
Author(s):  
Bum-Yong Kang ◽  
Jennifer M. Kleinhenz ◽  
Tamara C. Murphy ◽  
C. Michael Hart

Peroxisome proliferator-activated receptor (PPAR) γ activation attenuates hypoxia-induced pulmonary hypertension (PH) in mice. The current study examined the hypothesis that PPARγ attenuates hypoxia-induced endothelin-1 (ET-1) signaling to mediate these therapeutic effects. To test this hypothesis, human pulmonary artery endothelial cells (HPAECs) were exposed to normoxia or hypoxia (1% O2) for 72 h and treated with or without the PPARγ ligand rosiglitazone (RSG, 10 μM) during the final 24 h of exposure. HPAEC proliferation was measured with MTT assays or cell counting, and mRNA and protein levels of ET-1 signaling components were determined. To explore the role of hypoxia-activated transcription factors, selected HPAECs were treated with inhibitors of hypoxia-inducible factor (HIF)-1α (chetomin) or nuclear factor (NF)-κB (caffeic acid phenethyl ester, CAPE). In parallel studies, male C57BL/6 mice were exposed to normoxia (21% O2) or hypoxia (10% O2) for 3 wk with or without gavage with RSG (10 mg·kg−1·day−1) for the final 10 days of exposure. Hypoxia increased ET-1, endothelin-converting enzyme-1, and endothelin receptor A and B levels in mouse lung and in HPAECs and increased HPAEC proliferation. Treatment with RSG attenuated hypoxia-induced activation of HIF-1α, NF-κB activation, and ET-1 signaling pathway components. Similarly, treatment with chetomin or CAPE prevented hypoxia-induced increases in HPAEC ET-1 mRNA and protein levels. These findings indicate that PPARγ activation attenuates a program of hypoxia-induced ET-1 signaling by inhibiting activation of hypoxia-responsive transcription factors. Targeting PPARγ represents a novel therapeutic strategy to inhibit enhanced ET-1 signaling in PH pathogenesis.


2006 ◽  
Vol 290 (5) ◽  
pp. E916-E924 ◽  
Author(s):  
Juan Kong ◽  
Yan Chun Li

We have investigated the molecular mechanism whereby 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibits adipogenesis in vitro. 1,25(OH)2D3 blocks 3T3-L1 cell differentiation into adipocytes in a dose-dependent manner; however, the inhibition is ineffective 24–48 h after the differentiation is initiated, suggesting that 1,25(OH)2D3 inhibits only the early events of the adipogenic program. Treatment of 3T3-L1 cells with 1,25(OH)2D3 does not block the mitotic clonal expansion or C/EBPβ induction; rather, 1,25(OH)2D3 blocks the expression of C/EBPα, peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein-1, and other downstream adipocyte markers. The inhibition by 1,25(OH)2D3 is reversible, since removal of 1,25(OH)2D3 from the medium restores the adipogenic process with only a temporal delay. Interestingly, although the vitamin D receptor (VDR) protein is barely detectable in 3T3-L1 preadipocytes, its levels are dramatically increased during the early phase of adipogenesis, peaking at 4–8 h and subsiding afterward throughout the rest of the differentiation program; 1,25(OH)2D3 treatment appears to stabilize the VDR protein levels. Consistently, adenovirus-mediated overexpression of human (h) VDR in 3T3-L1 cells completely blocks the adipogenic program, confirming that VDR is inhibitory. Inhibition of adipocyte differentiation by 1,25(OH)2D3 is ameliorated by troglitazone, a specific PPARγ antagonist; conversely, hVDR partially suppresses the transacting activity of PPARγ but not of C/EBPβ or C/EBPα. Moreover, 1,25(OH)2D3 markedly suppresses C/EBPα and PPARγ mRNA levels in mouse epididymal fat tissue culture. Taken together, these data indicate that the blockade of 3T3-L1 cell differentiation by 1,25(OH)2D3 occurs at the postclonal expansion stages and involves direct suppression of C/EBPα and PPARγ upregulation, antagonization of PPARγ activity, and stabilization of the inhibitory VDR protein.


Author(s):  
Daniela Soto ◽  
Claudia Martini ◽  
Evelyn Frontera ◽  
Laura Montaldo ◽  
Maria C. Vila ◽  
...  

Aims: Reports regarding the effects of antioxidants in obesity have been contradictory. Antioxidant N-acetylcysteine is usually considered a nutritional supplement. Our aim is to evaluate bioactivity of N-acetylcysteine (NAC) on mature adipocytes, which is a close model to in vivo condition. Study Design: In vitro study. Place and Duration of Study: Department of Basic Science (Universidad Nacional de Lujan), Department of Chemical Biology (Universidad de Buenos Aires), CONICET – INEDES and CONICET – IQUIBICEN, between March 2017 and June 2019. Methodology: We evaluated the bioactivity of different concentrations of NAC for 5 days (0.01 mM to 5 mM) on fully differentiated 3T3-L1 cells (mature adipocytes). Results: We demonstrated that NAC treatment was not toxic to mature adipocytes. Only 5mM NAC inhibited reactive oxygen species production. 5 mM NAC treatment resulted in a 60% decrease in cellular triglycerides content and inhibited 70% cholesterol accumulation.  We also determined the mRNA and protein expression levels of Peroxisome Proliferator-Activated Receptor g as well as, mRNA levels of lipid protein Perilipin in NAC treated adipocytes; we observed that 5mM NAC treatment caused nearly 30% decrease in the expression of these parameters. Conclusion: These results suggest that NAC could avoid lipid accumulation in mature adipocytes; the antioxidant NAC could be beneficial in obesity treatment.


Dermatology ◽  
2020 ◽  
pp. 1-5
Author(s):  
Christos C. Zouboulis ◽  
Síona Ní Raghallaigh ◽  
Gerd Schmitz ◽  
Frank C. Powell

Background: Despite their widespread clinical use in both acne vulgaris and rosacea, the effects of tetracyclines on sebocytes have not been investigated until now. Sebaceous glands are central to the pathogenesis of acne and may be important in the development of rosacea. Objective: The aim of this study was to assess the effects of doxycycline on the immortalized SZ95 sebaceous gland cell line as a model for understanding possible effectiveness on the sebaceous glands in vivo. Methods: The effects of doxycycline on SZ95 sebocyte numbers, viability, and lipid content as well as its effects on the mRNA levels of peroxisome proliferator-activated receptors α and γ, in comparison to the peroxisome proliferator-activated receptor γ agonist troglitazone, were investigated. Results: Doxycycline reduced the cell number and increased the lipid content of SZ95 sebocytes in vitro after 2 days of treatment. These doxycycline effects may be explained by an upregulation of peroxisome proliferator-activated receptor γ mRNA levels at 12 and 24 h, whereas troglitazone already upregulated peroxisome proliferator-activated receptor γ levels after 6 h. Both compounds did not influence peroxisome proliferator-activated receptor α mRNA levels. Conclusion: These new findings illustrate a previously unknown effect of doxycycline on sebocytes, which may be relevant to their modulation of disorders of the pilosebaceous unit, such as acne vulgaris and rosacea.


2016 ◽  
Vol 39 (3) ◽  
pp. 860-870 ◽  
Author(s):  
Mei Wang ◽  
Yongjun Li ◽  
Kun Zhou ◽  
Guoru Zhang ◽  
Yaling Wang ◽  
...  

Background/Aims: Extensive research has explored the role of aldosterone in insulin resistance. Recent evidence suggests that the mineralocorticoid receptor (MR) mediates aldosterone-induced dysregulation of cytokines, and most of this research has focused on adjustments in fat tissue and adipocytes. However, the direct effect of MR blockade on insulin resistance in cardiomyocytes remains largely unknown. In the present study, we investigated whether MR blockade improves insulin-sensitizing factors in insulin-resistant rats and attenuates the dysregulation of the aldosterone-related transport of adiponectin and glucose in cardiomyocytes and examined the underlying mechanisms. Methods: The effects of aldosterone, MR inhibitors (e.g., eplerenone), a peroxisome proliferator-activated receptor (PPAR) α agonist, and a p38 mitogen-activated protein kinase (MAPK) inhibitor on adiponectin and glucose transport were studied at the mRNA and protein levels in vitro and in vivo. Results: Our data revealed that aldosterone reduced the expression of adiponectin and inhibited the transport of glucose in cardiomyocytes and that MR blockade reversed these affects. In vivo, MR blockade improved insulin-sensitive parameters and increased adiponectin expression in the myocardia of high-fat diet rats. Furthermore, aldosterone promoted p38MAPK expression but negatively affected PPARα expression, and the downregulation of adiponectin by aldosterone was reversed by MR blockade, a PPARα agonist, and a p38 MAPK inhibitor. Conclusion: The above results suggested that aldosterone promoted insulin resistance in the heart and that this effect could be partly reversed by MR blockade through signal transduction in the P38 MAPK pathway and PPARα.


2003 ◽  
Vol 30 (2) ◽  
pp. 253-262 ◽  
Author(s):  
M Imae ◽  
Z Fu ◽  
A Yoshida ◽  
T Noguchi ◽  
H Kato

Transcription factors of the FoxO family in mammals are orthologues of the Caenorhabditis elegans forkhead factor DAF-16, which has been characterized as a target of insulin-like signalling. Three members of this family have been identified in rodents: FoxO1, FoxO3 and FoxO4, originally termed FKHR, FKHRL1 and AFX respectively. A number of in vitro studies have revealed that FoxOs are regulated through phosphorylation in response to insulin and related growth factors, resulting in their nuclear exclusion and inactivation. To clarify the mechanisms involved in the regulation of these factors in vivo, we investigated in the present study whether or not, and if so how, their mRNA levels in rat liver respond to the stimuli of several nutritional and hormonal factors. Imposed fasting for 48 h significantly elevated mRNA levels of FoxO1 (1.5-fold), FoxO3 (1.4-fold), and FoxO4 (1.6-fold). Refeeding for 3 h recovered the induced mRNA levels of FoxO1 and FoxO3 to the control levels, but did not affect that of FoxO4. FoxO1 and FoxO4 mRNA levels were proved to be highly reflective of their protein levels measured by Western immunoblotting. Of the three FoxO genes, FoxO4 only showed altered levels of mRNA (a 1.5-fold increase) in response to a protein-free diet. Streptozotocin-induced diabetes for 28 days decreased hepatic mRNA levels of FoxO1 and FoxO3 and increased the level of FoxO4 mRNA, but short-term (7 days) diabetes had fewer effects on the expression of these genes. Insulin replacement partially restored the FoxO1 and FoxO4 mRNA levels, but had no effect on the FoxO3 mRNA level. Daily administration for 1 week of dexamethasone, a synthetic glucocorticoid, increased the mRNA levels of FoxO1 (1.8-fold) and FoxO3 (2.4-fold). These results show that the FoxO genes respond differently to nutritional and hormonal factors, suggesting a new mechanism for the regulation of FoxO-dependent gene expression by these factors. Moreover, changes of FoxO1 and FoxO4 in the nucleus in response to fasting also suggest that the regulation of nucleus/cytoplasm translocation actually functions in vivo.


2003 ◽  
Vol 30 (3) ◽  
pp. 317-329 ◽  
Author(s):  
KS Frederiksen ◽  
EM Wulf ◽  
K Wassermann ◽  
P Sauerberg ◽  
J Fleckner

Peroxisome proliferator activated receptor (PPAR)-alpha controls the expression of multiple genes involved in lipid metabolism, and activators of PPAR-alpha, such as fibrates, are commonly used drugs in the treatment of hypertriglyceridemia and other dyslipidemic states. Recent data have also suggested a role for PPAR-alpha in insulin resistance and glucose homeostasis. In the present study, we have assessed the transcriptional and physiological responses to PPAR-alpha activation in a diet-induced rat model of insulin resistance. The two PPAR-alpha activators, fenofibrate and Wy-14643, were dosed at different concentrations in high-fat fed Sprague-Dawley rats, and the transcriptional responses were examined in liver using cDNA microarrays. In these analyses, 98 genes were identified as being regulated by both compounds. From this pool of genes, 27 correlated to the observed effect on plasma insulin, including PPAR-alpha itself and the leukocyte antigen-related protein tyrosine phosphatase (PTP-LAR). PTP-LAR was downregulated by both compounds, and showed upregulation as a result of the high-fat feeding. This regulation was also observed at the protein level. Furthermore, downregulation of PTP-LAR by fenofibric acid was demonstrated in rat FaO hepatoma cells in vitro, indicating that the observed regulation of PTP-LAR by fenofibrate and Wy-14643 in vivo is mediated as a direct effect of the PPAR agonists on the hepatocytes. PTP-LAR is one of the first genes involved in insulin receptor signaling to be shown to be regulated by PPAR-alpha agonists. These data suggest that factors apart from skeletal muscle lipid supply may influence PPAR-alpha-mediated amelioration of insulin resistance.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document