scholarly journals A Flexible Blue Light-Emitting Diode Based on ZnO Nanowire/Polyaniline Heterojunctions

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Y. Y. Liu ◽  
X. Y. Wang ◽  
Y. Cao ◽  
X. D. Chen ◽  
S. F. Xie ◽  
...  

An organic/inorganic light-emitting diode (LED) consisting of n-type vertically aligned ZnO nanowires (NWs) and p-type proton acid doped polyaniline (PANi) is reported. The device was fabricated on flexible indium-tin-oxide (ITO) coated polyethylene terephthalate (PET) substrate. A broad blue light emission band ranging from 390 nm to 450 nm was observed in the electroluminescence (EL) spectra of the device, which was related to the interface recombination of electrons in the conduction band of ZnO NWs and holes in the polaron level of PANi. The turn-on voltage of the device is~3.5 V, lower than most of ZnO NWs based LED devices. In combination with the easy fabrication, flexibility, low power consumption, and mechanical robustness, this novel device is very promising in the application of blue LEDs.

1991 ◽  
Vol 256 ◽  
Author(s):  
Nader M. Kalkhoran ◽  
F. Namavar ◽  
H. P. Maruska

ABSTRACTWe report the first demonstration of visible light emission from an all solid-state n-p heterojunction diode based on porous silicon. The p-type silicon was electrochemically etched in a hydrofluoric acid solution to form a porous silicon region; the n-p heterojunction diode was fabricated by depositing a wide bandgap n-type semiconductor, indium-tin-oxide (ITO), onto the surface of the porous silicon. With positive bias applied, electroluminescence was observed with a relatively narrow peak at about 580 nm. The device showed strong rectifying properties and no light emission was observed under reverse bias condition. Photoluminescence in the red, orange, yellow, and green was also observed in separate sample preparations.


1994 ◽  
Vol 08 (02) ◽  
pp. 69-92 ◽  
Author(s):  
XUN WANG

In this review article, we give a new insight into the luminescence mechanism of porous silicon. First, we observed a “pinning” characteristic of photoluminescent peaks for as-etched porous silicon samples. It was explained as resulting from the discontinuous variation of the size of Si nanostructures, i.e. the size quantization. A tight-binding calculation of the energy band gap widening versus the dimension of nanoscale Si based on the closed-shell Si cluster model agrees well with the experimental observations. Second, the blue-light emission from porous silicon was achieved by using boiling water treatment. By investigating the luminescence micrographic images and the decaying behaviors of PL spectra, it has been shown that the blue-light emission is believed to be originated from the porous silicon skeleton rather than the surface contaminations. The conditions for achieving blue light need proper size of Si nanostructures, low-surface recombination velocity, and mechanically strong skeleton. The fulfillment of these conditions simultaneously is possible but rather critical. Third, the exciton dynamics in light-emitting porous silicon is studied by using the temperature-dependent and picosecond time-resolved luminescence spectroscopy. A direct evidence of the existence of confined excitons induced by the quantum size effect has been revealed. Two excitation states are found to be responsible for the visible light emission, i.e. a higher lying energy state corresponding to the confined excitons in Si nanostructures and a lower lying state related with surfaces of Si wires or dots. A picture of the carrier transfer between the quantum confined state and the surface localized state has been proposed. Finally, we investigated the transient electroluminescence behaviors of Au/porous silicon/Si/Al structure and found it is very similar to that of an ordinary p-n junction light-emitting diode. The mechanism of electroluminescence is explained as the carrier injection through the Au/porous silicon Schotky barrier and the porous silicon/p-Si heterojunction into the corrugated Si wires, where the radiative recombination of carriers occurs.


2014 ◽  
Vol 93 ◽  
pp. 264-269 ◽  
Author(s):  
Henryk Teisseyre ◽  
Michal Bockowski ◽  
Toby David Young ◽  
Szymon Grzanka ◽  
Yaroslav Zhydachevskii ◽  
...  

In this communication, the use of gallium nitride doped with beryllium as an efficient converter for white light emitting diode is proposed. Until now beryllium in this material was mostly studied as a potential p-type dopant. Unfortunately, the realization of p-type conductivity in such a way seems impossible. However, due to a very intensive yellow emission, bulk crystals doped with beryllium can be used as light converters. In this communication, it is demonstrated that realisation of such diode is possible and realisation of a colour rendering index is close to that necessary for white light emission.


2013 ◽  
Vol 686 ◽  
pp. 49-55
Author(s):  
M. Ain Zubaidah ◽  
N.A. Asli ◽  
Mohamad Rusop ◽  
Saifollah Abdullah

For this experiment, the main purpose of this experiment is to determine the electroluminescence of PSiNs samples with optimum electrolyte volume ratio of photo-electrochemical anodisation. PSiNs samples were prepared by photo-electrochemical anodisation by using p-type silicon substrate. For the formation of PSiNs on the silicon surface, a fixed current density (J=20 mA/cm2) and 30 minutes etching time were applied for the various electrolyte volume ratio. Volume ratio of hydrofluoric acid 48% (HF48%) and absolute ethanol (C2H5OH), HF48%:C2H5OH was used for sample A (3:1), sample B (2:1), sample C (1:1), sample D (1:2) and sample E (1:3). The light emission can be observed at visible range. The effective electroluminescence was observed for sample C. Porous silicon nanostructures light–emitting diode (PSiNs-LED) has high-potential device for future flat screen display and can be high in demand.


2020 ◽  
Vol 15 (11) ◽  
pp. 1364-1373
Author(s):  
Iman E. Shaaban ◽  
Ahmed S. Samra ◽  
Bedir Yousif ◽  
N. A. Alghamdi ◽  
Shamia El-Sherbiny ◽  
...  

The present search handles the blue light emission investigation of hybrid quantum dots organic light-emitting devices. The emissions at 445 nm and 460 nm have been examined for microcavity hybrid quantum dot organic light-emitting devices (QD-OLED) upon quantum dots of CdS and CdSe. External light emissions have been evaluated through a numerical model based on the transfer matrix for electromagnetic plane waves. The devices' optical properties are investigated based on internal reflectance and cavity length by considering the architecture consisting of multilayers thin-film structures. The overall performance of the light-emitting devices with emission at 445 nm showed an improvement of the enhancement factor and narrowing outcoupling emission relative to the devices with emission at 460 nm. Besides, the light-emitting devices based on CdS QDs revealed better performance relative to the devices based on CdSe QDs.


1992 ◽  
Vol 283 ◽  
Author(s):  
X. Y. Hou ◽  
G. Shi ◽  
W. Wang ◽  
F. L. Zhang ◽  
P. H. Hao ◽  
...  

ABSTRACTThrough a post treatment of light emitting porous silicon in boilingwater, a large blue shift of its photoluminescence (PL) spectrum hasbeen observed and a stable blue-green light emission at the peak wavelength down to 500 nm is achieved. The effect of boiling water treatment is suggested to be a kind of oxidation, which could reduce thesize of the Si column, fill up some micropores and strengthen the Siskeleton. The photoluminescence microscopic observation shows that the surface of blue light emitting porous silicon is composed of manysmall uniformly light-emitting domains at the size of several tens of μm. Fourier transform infrared reflection (FTIR) measurements show that the formation of Si-H bonds is not responsible for the visible luminescence in the very thin Si wires.


2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Limin Dong ◽  
Jiatong Zhao ◽  
Qin Li ◽  
Zhidong Han

A highly intense yellow-emitting phosphorSr2-xBaxTiO4:Eu3+,Gd3+peaking at 593–611 nm was synthesized by the sol-gel method. XRD and SEM show that the samples are single phase and have irregular shape. The excitation wavelength matches well with that of the emission of the blue-light-emitting diode. The emission peaks at 593 and 611 nm are attributed to the transitions from the5D0-7F1and5D0-7F2ofEu3+ions, respectively.Gd3+was used as sensitizer, aiming at increasing the luminous intensity. A certain amount ofSr2+andBa2+is contributed to the intensity of light emission.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5317
Author(s):  
Jingshan Hou ◽  
Wenxiang Yin ◽  
Langping Dong ◽  
Yang Li ◽  
Yufeng Liu ◽  
...  

In this work, a novel red-emitting oxyfluoride phosphor Na2NbOF5:Mn4+ with an ultra-intense zero-phonon line (ZPL) was successfully synthesized by hydrothermal method. The phase composition and luminescent properties of Na2NbOF5:Mn4+ were studied in detail. The photoluminescence excitation spectrum contains two intense excitation bands centered at 369 and 470 nm, which match well with commercial UV and blue light-emitting diode (LED) chips. When excited by 470 nm blue light, Na2NbOF5:Mn4+ exhibits red light emission dominated by ZPL. Notably, the color purity of the Na2NbOF5:Mn4+ red phosphor can reach 99.9%. Meanwhile, the Na2NbOF5:Mn4+ phosphor has a shorter fluorescence decay time than commercial K2SiF6:Mn4+, which is conducive to fast switching of images in display applications. Profiting from the intense ZPL, white light-emitting diode (WLED) with high color rendering index of Ra = 86.2 and low correlated color temperature of Tc = 3133 K is realized using yellow YAG:Ce3+ and red Na2NbOF5:Mn4+ phosphor. The WLED fabricated using CsPbBr3 quantum dots (QDs) and red Na2NbOF5:Mn4+ phosphor shows a wide color gamut of 127.56% NTSC (National Television Standard Committee). The results show that red-emitting Na2NbOF5:Mn4+ phosphor has potential application prospects in WLED lighting and display backlight.


Sign in / Sign up

Export Citation Format

Share Document