scholarly journals Antioxidant and Antiproliferative Activities of Leaf Extracts fromPlukenetia volubilisLinneo (Euphorbiaceae)

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ana Karina Lima Nascimento ◽  
Raniere Fagundes Melo-Silveira ◽  
Nednaldo Dantas-Santos ◽  
Júlia Morais Fernandes ◽  
Silvana Maria Zucolotto ◽  
...  

Plukenetia volubilisLinneo, or Sacha inca, is an oleaginous plant from the Euphorbiaceae family. The aim of this work was to perform a chemical and biological analysis of different leaf extracts fromP. volubilissuch as aqueous extract (AEL), methanol (MEL), ethanol (EEL), chloroform (CEL), and hexane (HEL). Thin layer chromatography analysis revealed the presence of phenolic compounds, steroids, and/or terpenoídes. Furthermore, the antioxidant activities were analyzed byin vitroassays and their effects on cell lineages byin vivoassays. The Total Antioxidant Capacity (TCA) was expressed as equivalent ascorbic acid (EEA/g) and it was observed that the extracts showed values ranging from 59.31 to 97.76 EAA/g. Furthermore, the DPPH assay values ranged from 62.8% to 88.3%. The cell viability assay showed that the extracts were able to reduce viability from cancer cells such as HeLa and A549 cells. The extracts MEL and HEL (250 µg/mL) were able to reduce the proliferation of HeLa cells up to 54.3% and 48.5%, respectively. The flow cytometer results showed that these extracts induce cell death via the apoptosis pathway. On the other hand, the extracts HEL and AEL were able to induce cell proliferation of normal fibroblast 3T3 cells.

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 508 ◽  
Author(s):  
Daniela Luz ◽  
Maria Amaral ◽  
Flavia Sacerdoti ◽  
Alan Bernal ◽  
Wagner Quintilio ◽  
...  

Shiga toxin (Stx) producing Escherichia coli (STEC) is responsible for causing hemolytic uremic syndrome (HUS), a life-threatening thrombotic microangiopathy characterized by thrombocytopenia, hemolytic anemia, and acute renal failure after bacterially induced hemorrhagic diarrhea. Until now, there has been neither an effective treatment nor method of prevention for the deleterious effects caused by Stx intoxication. Antibodies are well recognized as affinity components of therapeutic drugs; thus, a previously obtained recombinant human FabC11:Stx2 fragment was used to neutralize Stx2 in vitro in a Vero cell viability assay. Herein, we demonstrated that this fragment neutralized, in a dose-dependent manner, the cytotoxic effects of Stx2 on human glomerular endothelial cells, on human proximal tubular epithelial cells, and prevented the morphological alterations induced by Stx2. FabC11:Stx2 protected mice from a lethal dose of Stx2 by toxin-antibody pre-incubation. Altogether, our results show the ability of a new encouraging molecule to prevent Stx-intoxication symptoms during STEC infection.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii34-ii34
Author(s):  
S G Schwab ◽  
K Sarnow ◽  
E Alme ◽  
R Goldbrunner ◽  
H Bjørsvik ◽  
...  

Abstract BACKGROUND Although withdrawn from the market due to cardiotoxicity, we have shown that the antipsychotic drug Thioridazine shows chemosensitizing effects in combination with Temozolomide (TMZ) for the treatment of glioblastoma multiforme (GBM). Based on our prior observations, the aim of the presented project was through medicinal chemistry, to design and synthesize new compounds based on Thioridazines tricyclic structure, and to determine their therapeutic potential. MATERIAL AND METHODS Fourteen compounds were synthesized where variations were made within the tricyclic side chains. The newly synthesized compounds were screened for therapeutic efficacy with or without TMZ using a WST-1 cell viability assay as well as a real-time imaging system (IncuCyte). Tests were performed on both monolayer cell cultures, as well as on glioma stem cell spheroids (GSC). The therapeutic effects were also studied on human astrocytes (NHA) as well as on rat brain organoids (BO). Annexin V/propidium iodide (PI) double staining followed by flow cytometric analysis was performed after 48 hours of treatment. RESULTS Following an extensive screening, we identified two novel compounds (EA01 and EA02) that at concentrations of 4 and 9.5 µM showed a strong cytotoxicity on GBM cell lines (U-87 MG p<0,0001, U251 p<0,0001, LN18 p=0,0004) as well as on glioma stem cells (GSC) (P3 p<0,0001) compared to NHA and BOs respectively. Also, when BOs were confronted with GSC spheres in an invasion assay, a selective cytotoxicity was observed in the GSCs. Mechanistically, we show that both compounds induce apoptosis in the GBM cells. Moreover, intravenous delivery of increasing concentrations of EA01 and EA02 revealed no toxicity in animals at concentrations up to 21 mg/kg. CONCLUSION We have developed two new tricyclic therapeutic compounds that show a strong selective cytotoxicity in GBM cells with limited systemic toxicity in animals. Ongoing studies are investigating the therapeutic potential of EA01 and EA02 in orthotopic xenografts in vivo.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jun Yu ◽  
Yan Yan ◽  
Yiye Chen ◽  
Yan Zheng ◽  
Xiaoyan Yu ◽  
...  

Background. The aim of this study was to research the effects of glutamine synthetase (GS) and glutamate aspartate transporter (GLAST) in rat Müller cells and the effects of an adenosine A2AR antagonist (SCH 442416) on GS and GLAST in hypoxia both in vivo and in vitro. Methods. This study used RT-PCR and Western blotting to quantify the expressions of GS and GLAST under different hypoxic conditions as well as the expressions of GS and GLAST at different drug concentrations. A cell viability assay was used to assess drug toxicity. Results. mRNA and protein expression of GS and GLAST in hypoxia Group 24 h was significantly increased. mRNA and protein expressions of GS and GLAST both increased in Group 1 μM SCH 442416 compared with other groups. One micromolar SCH 442416 could upregulate GS and GLAST’s activity in hypoxia both in vivo and in vitro. Conclusions. Hypoxia activates GS and GLAST in rat retinal Müller cells in a short time in vitro. (2) A2AR antagonists upregulate the activity of GS and GLAST in hypoxia both in vivo and in vitro.


2016 ◽  
Vol 18 (1) ◽  
pp. 96-104 ◽  
Author(s):  
M.D.M. VIANA ◽  
R.M. CARDOSO ◽  
N.K.G.T. SILVA ◽  
M.A.P. FALCÃO ◽  
A.C.S. VIEIRA ◽  
...  

ABSTRACT Experimental in vivo study aimed to characterize the anxiolytic-like effect of the Citrus limon fruit peel’s essential oil (CLEO) in animal models of anxiety, besides evaluating the viability J774.A1 cells in vitro through the MTT reduction method at the concentrations of 10 and 100 µg/mL. The anxiolytic behavior was evaluated in Swiss mice (n = 8) using the methodology of Elevated Plus-Maze (EPM) and Open-Field (OF). CLEO was tested by inhalation at the doses of 100, 200, and 400 µL, and as control, animals were subjected to inhalation of the vehicle (saline solution 0.9% + Tween80®) and intraperitoneal administration of diazepam (1.5 mg/kg). In the cell viability assay, it was observed that none of the concentrations showed cytotoxicity. OF test showed significant anxiolytic activity at all tested doses of OECL, compared to the control group, without changing the motor performance of the animals. Corroborating OF data, the EPM test confirmed anxiolytic activity in at least two doses of the tested oil (200 and 400 µL), justified by the number of entries and increase in the percentage of time in the open arms. The data analysis of this study evidenced that inhalation of OECL was able to induce an anxiolytic behavior in mice; however, further studies are required to ensure its safe use by the population.


2019 ◽  
Vol 20 (8) ◽  
pp. 1917 ◽  
Author(s):  
Yixuan Xia ◽  
Chu Shing Lam ◽  
Wanfei Li ◽  
Md. Shahid Sarwar ◽  
Kanglun Liu ◽  
...  

Natural products, explicitly medicinal plants, are an important source of inspiration of antitumor drugs, because they contain astounding amounts of small molecules that possess diversifying chemical entities. For instance, Isodon (formerly Rabdosia), a genus of the Lamiaceae (formerly Labiatae) family, has been reported as a rich source of natural diterpenes. In the current study, we evaluated the in vitro anti-proliferative property of flexicaulin A (FA), an Isodon diterpenoid with an ent-kaurane structure, in human carcinoma cells, by means of cell viability assay, flow cytometric assessment, quantitative polymerase chain reaction array, Western blotting analysis, and staining experiments. Subsequently, we validated the in vivo antitumor efficacy of FA in a xenograft mouse model of colorectal carcinoma. From our experimental results, FA appears to be a potent antitumor molecule, since it significantly attenuated the proliferation of human colorectal carcinoma cells in vitro and restricted the growth of corresponsive xenograft tumors in vivo without causing any adverse effects. Regarding its molecular mechanism, FA considerably elevated the expression level of p21 and induced cell cycle arrest in the human colorectal carcinoma cells. While executing a non-apoptotic mechanism, we believe the antitumor potential of FA opens up new horizons for the therapy of colorectal malignancy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiali Hu ◽  
Cuiyu Chen ◽  
Ruitao Lu ◽  
Yu Zhang ◽  
Yang Wang ◽  
...  

Oncolytic viruses (OVs) are considered a promising therapeutic alternative for cancer. However, despite the development of novel OVs with improved efficacy and tumor selectivity, their limited efficacy as monotherapeutic agents remains a significant challenge. This study extended our previously observed combination effects of propranolol, a nonselective β-blocker, and the T1012G oncolytic virus into colorectal cancer models. A cell viability assay showed that cotreatment could induce synergistic killing effects on human and murine colorectal cell lines. Moreover, cotreatment caused sustained tumor regression compared with T1012G monotherapy or propranolol monotherapy in human HCT116 and murine MC38 tumor models. The propranolol activity was not via a direct effect on viral replication in vitro or in vivo. Western blotting showed that cotreatment significantly enhanced the expression of cleaved caspase-3 in HCT116 and MC38 cells compared with the propranolol or T1012G alone. In addition, propranolol or T1012G treatment induced a 35.06% ± 0.53% or 35.49% ± 2.68% reduction in VEGF secretion in HUVECs (p < 0.01/p < 0.01). Cotreatment further inhibited VEGF secretion compared with the monotherapies (compared with propranolol treatment: 75.06% ± 1.50% decrease, compared with T1012G treatment: 74.91% ± 0.68%; p<0.001, p < 0.001). Consistent with the in vitro results, in vivo data showed that cotreatment could reduce Ki67 and enhance cleaved caspase 3 and CD31 expression in human HCT116 and murine MC38 xenografts. In summary, β-blockers could improve the therapeutic potential of OVs by enhancing oncolytic virus-mediated killing of colorectal cancer cells and colorectal tumors.


2019 ◽  
Vol 12 (2) ◽  
pp. 661-667
Author(s):  
Fatmawaty Fatmawaty ◽  
Ni G. M. Anggreni ◽  
Naufal Fadhil ◽  
Vivitri D. Prasasty

Piper crocatum and Persea americana Mill leaves are commonly used in traditional medicinal remedies, such as antidiabetes, antitumors and Alzheimer treatment. However, the extensive use of plant extracts over worldwide becomes significant concerns including its safety, efficacy, and quality. Therefore, the accurate scientific evaluation has become a precondition for acceptance of herbal health claims. The aim of this study was to determine the antioxidant activities of Piper crocatum Ruiz & Pav and Persea americana Mill leaf extracts. Isolation of antioxidant fractions were conducted using organic solvent extraction techniques. Antioxidant assays were conducted by using in vitro and in vivo methods involving DPPH and MDA methods. In this study, in vitro assays of Persea americana Mill and Piper crocatum Ruiz & Pav leaf extracts showed the best activity in water fraction. Moreover, in vivo assays of both plant leaf extracts showed the best dose at 8 mg. Persea americana Mill and Piper crocatum Ruiz & Pav leaf extracts have been successfully determined in antioxidant actions in vitro and in vivo. Persea americana Mill in water and ethanol solvents exhibit strong antioxidant properties. Meanwile, Piper crocatum Ruiz & Pav exhibit moderate activity in water and weak antioxidant activity in ethanol. Both plant leaves showed that 8 mg dose was better than the dose of 4 mg and 16 mg in vivo.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ye Yuan ◽  
Zexuan Yan ◽  
Jingya Miao ◽  
Ruili Cai ◽  
Mengsi Zhang ◽  
...  

Abstract Background The existing cell surface markers used for sorting glioma stem cells (GSCs) have obvious limitations, such as vulnerability to the enzymatic digestion and time-consuming labeling procedure. Reduced nicotinamide adenine dinucleotide (NADH) as a cellular metabolite with property of autofluorescence has the potential to be used as a new biomarker for sorting GSCs. Methods A method for sorting GSCs was established according to the properties of the autofluorescence of NADH. Then, the NADHhigh and NADHlow subpopulations were sorted. The stem-like properties of the subpopulations were evaluated by qRT-PCR, western blot analyses, limiting dilution assay, cell viability assay, bioluminescence imaging, and immunofluorescence analysis in vitro and in vivo. The relationship between CD133+/CD15+ cells and NADHhigh subpopulation was also assessed. Results NADHhigh cells expressed higher stem-related genes, formed more tumor spheres, and harbored stronger pluripotency in vitro and higher tumorigenicity in vivo, compared to NADHlow subpopulation. NADHhigh glioma cells had the similar stemness with CD133+ or CD15+ GSCs, but the three subpopulations less overlaid each other. Also, NADHhigh glioma cells were more invasive and more resistant to chemotherapeutic drug temozolomide (TMZ) than NADHlow cells. In addition, the autofluorescence of NADH might be an appropriate marker to sort cancer stem cells (CSCs) in other cancer types, such as breast and colon cancer. Conclusion Our findings demonstrate that intracellular autofluorescence of NADH is a non-labeling, sensitive maker for isolating GSCs, even for other CSCs.


2020 ◽  
Author(s):  
Ying Zhang ◽  
Jiahui Wei ◽  
Yi Tan ◽  
Chengling Zhang ◽  
Pingli Xu ◽  
...  

Abstract Background: The new formula Jiawei Foshou San (JFS) is consisted of ligustrazine, ferulic acid and tetrahydropalmatine designed from Foshou San . Previously JFS inhibited the growth of rat autograft endometriosis with unclear mechanism. To uncover the effect of JFS on invasion and metastasis in endometrial cells and xenograft endometriosis. Methods: In vitro , cell viability assay was performed for IC50 measurement in hEM15A and HEC1-B cells after treating JFS. Effects of JFS on invasion and metastasis were analyzed in scratch wound and transwell assay. In vivo , effect of JFS was evaluated in xenogeneic transplantation of endometriosis model. The gene and protein expression of MMP/TIMP signaling were inspected in vitro and in vivo . Results: Inhibitory effects of JFS were investigated with dose-dependent manner in hEM15A and HEC1-B cells. JFS significantly inhibited the invasion and metastasis in dose- and time-dependent manner. In xenograft endometriosis, JFS reduced the volume of ectopic endometrium. In-depth study, inactive MMP/TIMP signaling expressed the lower MMP-2/9, higher TIMP-1 by JFS in vitro and in vivo . Conclusions: JFS prevent invasion and metastasis via inactivation of MMP/TIMP signaling in endometrial cells and xenograft endometriosis. It reveals the potential mechanism of JFS on endometriosis and the benefit for further application.


Sign in / Sign up

Export Citation Format

Share Document