scholarly journals Sonochemical Approach to Synthesis of Co-B Catalysts and Hydrolysis of Alkaline NaBH4Solutions

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bilge Coşkuner ◽  
Aysel Kantürk Figen ◽  
Sabriye Pişkin

Co-B catalysts are promising candidates for hydrogen evolution via hydrolysis of alkaline sodium borohydride (NaBH4) solutions. In the present paper, a sonochemical approach was investigated for synthesis of Co-B catalysts and hydrolysis of alkaline NaBH4solutions. Sonochemical application on synthesizing process improved the intrinsic and extrinsic properties of Co-B catalysts such as crystal, spectral, surface area, pore volume, pore diameter, and particle size. Co-B catalysts prepared by sonochemical approach possessed smaller particle size, higher surface area, and higher pore volume than the Co-B catalysts prepared by coprecipitation synthesis. The effects of sonochemical process on hydrolysis of alkaline NaBH4solutions were investigated by Arrhenius theory. It was clearly demonstrated that the advantages of alkaline NaBH4solution sonohydrolysis provide superficial effects on hydrogen evolution kinetic as maximum H2generation rate (HGR) and minimum activation energy (Ea).

2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2018 ◽  
Vol 37 (1) ◽  
pp. 251-272 ◽  
Author(s):  
Junjian Zhang ◽  
Chongtao Wei ◽  
Gaoyuan Yan ◽  
Guanwen Lu

To better understand the structural characteristic of adsorption pores (pore diameter < 100 nm) of coal reservoirs around the coalbed methane production areas of western Yunnan and eastern Guizhou, we analyzed the structural and fractal characteristics of pore size range of 0.40–2.0 nm and 2–100 nm in middle–high rank coals ( Ro,max = 0.93–3.20%) by combining low-temperature N2/CO2 adsorption tests and surface/volume fractal theory. The results show that the coal reservoirs can be divided into three categories: type A ( Ro,max < 2.15%), type B (2.15% <  Ro,max <2.50%), and type C ( Ro,max > 2.15%). The structural parameters of pores in the range from 2 to 100 nm are influenced by the degree of coal metamorphism and the compositional parameters (e.g., ash and volatile matter). The dominant diameters of the specific surface areas are 10–50 nm, 2–50 nm, and 2–10 nm, respectively. The pores in the range from <2 nm provide the largest proportion of total specific surface area (97.22%–99.96%) of the coal reservoir, and the CO2-specific surface area and CO2-total pore volume relationships show a positive linear correlation. The metamorphic degree has a much greater control on the pores (pore diameter less than 2 nm) structural parameters than those of the pore diameter ranges from 2 to 100 nm. Dv1 and Dv2 can characterize the structure of 2–100 nm adsorption pores, and Dv1 (volume heterogeneity) has a positive correlation with the pore structural parameters such as N2-specific surface area and N2-total pore volume. This parameter can be used to characterize volume heterogeneity of 2–10 nm pores. Dv2 (surface heterogeneity) showed type A > type B > type C and was mainly affected by the metamorphism degree. Ds2 can be used to characterize the pore surface heterogeneity of micropores in the range of 0.62–1.50 nm. This parameter has a good correlation with the pore parameters (CO2-total pore volume, CO2-specific surface area, and average pore size) and is expressed as type C < type B < type A. In conclusion, the heterogeneity of the micropores is less than that of the meso- and macropores (2–100 nm). Dv1, Dv2, and Ds2 can be used as effective parameters to characterize the pore structure of adsorption pores. This result can provide a theoretical basis for studying the pore structure compatibility of coal reservoirs in the region.


2018 ◽  
Vol 5 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Olga V. Netskina ◽  
Tihon N. Filippov ◽  
Oksana V. Komova ◽  
Valentina I. Simagina

Abstract Sodium borohydride tablets have been employed as hydrogen-storage materials. Hydrogen release was performed by acidic hydrolysis where solutions of sulfuric and hydrochloric acids were added to the tablets, and by catalytic hydrolysis where water was added tablets of solid-state NaBH4/Co composite. In acidic solutions hydrogen evolution occurred instantaneously, and at high concentrations of acids the releasing hydrogen contained an admixture of diborane. Hydrogen evolution from the solidstate NaBH4/Co composite proceeded at a uniform rate of 13.8±0.1 cm3·min-1, water vapor being the only impurity in the evolving gas.


2011 ◽  
Vol 197-198 ◽  
pp. 1577-1581 ◽  
Author(s):  
Shu Ge Peng ◽  
Jun Na Liu ◽  
Xiao Fei Liu ◽  
Yu Qing Zhang ◽  
Jun Zhang

Poly (N-vinyl-2-pyrrolidone) (PVP) - stabilized ruthenium (0) nanorods have been successfully synthesized by refluxing ruthenium (Ⅲ) chloride (RuCl3) in low boiling point alcohols (including ethanol, n-propanol, and n-butanol) using microwave heating for the first time. The effects of low boiling point alcohols on the preparation and catalytic property of ruthenium nanorods were discussed. UV-Vis absorption spectra indicated ruthenium nanorods could be synthesized in n-butanol after 2 h refluxing, far below the refluxing time in ethanol and n-propanol. The activation energy of the hydrolysis of NaBH4 catalyzed by Ruthenium (0) nanorods obtained in ethanol, n-propanol, and n-butanol were determined to be 41.1, 33.3, and 27.9 kJ / mol, respectively.


2004 ◽  
Vol 19 (9) ◽  
pp. 2687-2693 ◽  
Author(s):  
Lay Gaik Teoh ◽  
Jiann Shieh ◽  
Wei Hao Lai ◽  
Min Hsiung Hon

The effects of mesoporous structure on grain growth were investigated in this study. The synthesis was accomplished using block copolymer as the organic template and tungsten chloride as the inorganic precursor. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy, x-ray diffractometry (XRD), transmission electron microscopy, and N2 adsorption/desorption isotherms were used to characterize the microstructures obtained for different temperatures. TGA and XRD analyses demonstrate that copolymers were expelled at 150–250 °C, and mesoporous structure was stable up to 350 °C. The pore diameter and the surface area evaluated from the Barrett-Joyner-Halenda model and Brunauer–Emmett–Teller method indicated that the average pore diameter is 4.11 nm and specific surface area is 191.5 m2/g for 250 °C calcination. Arrhenius equation used to calculate the activation energy for grain growth demonstrates that the activation energy for grain growth was about 38.1 kJ/mol before mesostructure collapse and 11.3 kJ/mol after collapse. These results show evidence of two different mechanisms governing the process of grain growth. The presence of the pore can be related to the obstacle for grain growth.


2017 ◽  
Vol 77 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Tihitinna Asmellash Belay ◽  
C. Y. Lin ◽  
H. M. Hsiao ◽  
M. F. Chang ◽  
J. C. Liu

Abstract In this study, we demonstrated that the choice of precursor has a strong effect on the reduction of nitrate (NO3−) using zero-valent copper (Cu0) synthesized by sodium borohydride (NaBH4). Different precursors: CuSO4, CuO, Cu2O, Cu powder, and Cu mesh were used to reduce NO3− at 677 mg-N/L under the reducing conditions of NaBH4. Compared with the prehydrolyzed samples, those prepared without prehydrolysis exhibited lower reduction rates, longer times and higher concentrations of nitrite (NO2−) intermediate. It was found that one-time addition of NaBH4 resulted in higher reduction rate and less NO2− intermediate than two-step addition. Results showed that Cu0 from CuSO4 possessed the smallest particle size (890.9 nm), highest surface area (26.0 m2/g), and highest reaction rate (0.166 min−1). Values of pseudo-first-order constant (kobs) were in the order: CuSO4 &gt; CuO &gt; Cu2O &gt; Cu powder &gt;Cu mesh. However, values of surface area-normalized reaction rate (kSA) were approximately equal. It was proposed that NO3− was reduced to NO2− on Cu0, and then converted to NH4+ and N2, respectively; H2 generated from both NaBH4 hydration and Cu (II) reduction contributed to NO3− reduction as well.


NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850137 ◽  
Author(s):  
Qingna Xu ◽  
Tongchao Ji ◽  
Qingfeng Tian ◽  
Yuhang Su ◽  
Liyong Niu ◽  
...  

A series of silica surface-capped with hexamethyldisilazane (denoted as H-SiO2) were prepared by liquid-phase in-situ surface-modification method. The as-obtained H-SiO2 was incorporated into acrylic amino (AA) baking paint to obtain AA/H-SiO2 composite extinction paints and/or coatings. N2 adsorption–desorption tests were conducted to determine the specific surface area as well as pore size and pore volume of H-SiO2. Moreover, the effects of H-SiO2 matting agents on the physical properties of AA paint as well as the gloss and transmittance of AA-based composite extinction coatings were investigated. Results show that H-SiO2 matting agents possess a large specific surface area and pore volume than previously reported silica obtained by liquid-phase method. Besides, they have better dispersibility in AA baking paint than the unmodified silica. Particularly, H-SiO2 with a silica particle size of 6.7[Formula: see text][Formula: see text]m and the dosage of 4% (mass fraction) provides an extinction rate of 95.2% and a transmittance of 79.3% for the AA-based composite extinction coating, showing advantages over OK520, a conventional silica matting agent. Along with the increase in the silica particle size, H-SiO2 matting agents cause a certain degree of increase in the viscosity of AA paint as well as a noticeable decrease in the gloss of the AA-based composite extinction coating, but they have insignificant effects on the hardness and adhesion to substrate of the AA-based composite coatings. This means that H-SiO2 matting agents could be well applicable to preparing low-viscosity and low-gloss AA-based matte coatings.


2012 ◽  
Vol 508 ◽  
pp. 212-215
Author(s):  
Hong Jing Tian ◽  
Qing Jie Guo ◽  
Jian She Zhang

Hydrolysis of sodium borohydride is regarded as a promising technology to produce pure hydrogen in portable fuel cell fields. In this paper, Ce is examined to be a better co-catalyst than Ni and Fe for the attapulgite clay (AT)-supported cobalt-boride (Co-B) catalyst. Factors, such as solution temperature, NaBH4 concentration and NaOH concentration on performance of these catalysts in hydrolysis of sodium borohydride are investigated. Furthermore, characteristics of these AT-supported catalysts are studied using SEM and XRD. Activation energy of hydrogen generation using such catalysts is estimated to be 37.02 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document