Structural Adjustment of In-Situ Surface-Modified Silica Matting Agent and Its Effect on Coating Performance

NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850137 ◽  
Author(s):  
Qingna Xu ◽  
Tongchao Ji ◽  
Qingfeng Tian ◽  
Yuhang Su ◽  
Liyong Niu ◽  
...  

A series of silica surface-capped with hexamethyldisilazane (denoted as H-SiO2) were prepared by liquid-phase in-situ surface-modification method. The as-obtained H-SiO2 was incorporated into acrylic amino (AA) baking paint to obtain AA/H-SiO2 composite extinction paints and/or coatings. N2 adsorption–desorption tests were conducted to determine the specific surface area as well as pore size and pore volume of H-SiO2. Moreover, the effects of H-SiO2 matting agents on the physical properties of AA paint as well as the gloss and transmittance of AA-based composite extinction coatings were investigated. Results show that H-SiO2 matting agents possess a large specific surface area and pore volume than previously reported silica obtained by liquid-phase method. Besides, they have better dispersibility in AA baking paint than the unmodified silica. Particularly, H-SiO2 with a silica particle size of 6.7[Formula: see text][Formula: see text]m and the dosage of 4% (mass fraction) provides an extinction rate of 95.2% and a transmittance of 79.3% for the AA-based composite extinction coating, showing advantages over OK520, a conventional silica matting agent. Along with the increase in the silica particle size, H-SiO2 matting agents cause a certain degree of increase in the viscosity of AA paint as well as a noticeable decrease in the gloss of the AA-based composite extinction coating, but they have insignificant effects on the hardness and adhesion to substrate of the AA-based composite coatings. This means that H-SiO2 matting agents could be well applicable to preparing low-viscosity and low-gloss AA-based matte coatings.

2016 ◽  
Vol 697 ◽  
pp. 368-371 ◽  
Author(s):  
Ying Chen Qiao ◽  
Xiao Lei Li ◽  
Jian He ◽  
Hui Ming Ji ◽  
Zhu Rui Shen ◽  
...  

ZrO2-SiO2 gels were prepared by prehydrolysis method with sol-gel process. Then,the wet gels were aged at different temperatures (60,110,170 °C) in ethanol or alkaline solution (pH=8). Finally, the monolithic ZrO2-SiO2 aerogels were obtained by supercritical fluid drying. N2 adsorption-desorption, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the microstructure of aerogels. The aim of this research is to study the effect of aging temperature and pH value of aging solution on the microstructure of ZrO2-SiO2 aerogels. The results show that the specific surface area and pore volume of ZrO2-SiO2 aerogels aging in alkaline solution (pH=8) is lower than that of aging in the ethanol. And there is a shift of the pore size distribution towards larger values. This is because the cross-linking reaction in alkaline solution enlarges the particle size. As the aging temperature increases, the specific surface area and pore volume decrease and the particle size distribution of ZrO2-SiO2 aerogels is more uniform.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2015 ◽  
Vol 22 (6) ◽  
Author(s):  
Nazile Ural

AbstractIn this study, the relationships between geotechnical index properties and the pore-size distribution of compacted natural silt and artificial soil mixtures, namely, silt with two different clays and three different clay percentages (10%, 20%, and 40%), were examined and compared. Atterberg’s limit tests, standard compaction tests, mercury intrusion porosimetry, X-ray diffraction, scanning electron microscopy (SEM) analysis, and Brunauer-Emmett-Teller specific surface analysis were conducted. The results show that the liquid limit, the cumulative pore volume, and specific surface area of artificially mixed soils increase with an increase in the percentage of clay. The cumulative pore volume and specific surface area with geotechnical index properties were compared. High correlation coefficients were observed between the specific areas and both the liquid limit and the plasticity index, as well as between the cumulative pore volume and both the clay percentage and the


2021 ◽  
Vol 316 ◽  
pp. 689-693
Author(s):  
K.D. Naumov ◽  
V.G. Lobanov

The aim of this paper is to establish a regulatory change of zinc powders key physicochemical properties with varying electroextraction conditions. It was studied influence zinc concentration, alkali concentration and current density. Quantitative dependencies of zinc powders particle size and specific surface area from mentioned electroextraction parameters are shown. At increasing of zinc concentration, decreasing of NaOH concentration and decreasing of current density of powders particle size growth, correspondingly specific surface area is declined. It is indicated, that electrolytic zinc powders bulk density varies from 0.61 g/cm3 to 0.75 g/cm3 with a decrease of average particle size from 121 μm to 68 μm. In comparison, spherical powders bulk density used in various industries is currently 2.45-2.6 g/cm3. In all experiments, metal zinc content varied in the range of 91.1-92.5%, the rest - ZnO. To a greater extent, this indicator depends on powder washing quality from alkali and storage conditions.


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


2011 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Anirut Leksomboon ◽  
Bunjerd Jongsomjit

In this present study, the spherical silica support was synthesized from tetraethyloxysilane (TEOS), water, sodium hydroxide, ethylene glycol and n-dodecyltrimethyl ammonium bromide (C12TMABr). The particle size was controlled by variation of the ethylene glycol co-solvent weight ratio of a sol-gel method preparation in the range of 0.10 to 0.50. In addition, the particle size apparently increases with high weight ratio of co-solvent, but the particle size distribution was broader. The standard deviation of particle diameter is large when the co-solvent weight ratio is more than 0.35 and less than 0.15. However, the specific surface area was similar for all weight ratios ranging from 1000 to 1300 m2/g. The synthesized silica was spherical and has high specific surface area. The cobalt was impregnated onto the obtained silica to produce the cobalt catalyst used for CO2 hydrogenation.</


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 729-746
Author(s):  
Junhong Zhang ◽  
Zhi-jun He ◽  
Qing Guo ◽  
De-chao Xiao ◽  
Wen-long Zhan

Microwave modification of activated coke is reported as a green and simple route to improve its synergistic desulfurization and denitrification. The results showed that microwave irradiation improved the specific surface area and pore volume, decreased the pore size, and activated the surface functional groups of the activated coke. Under the conditions of a microwave power of 500 W and a modification time of 30 min, the specific surface area was increased from 185.9 m2/g to 351.7 m2/g, the pore volume increased from 0.042 m3/g to 0.111 m3/g, and the characteristic peak strengths of C=C and -OH drastically increased. When the reaction temperature was 140 °C and the O2 concentration was 10% (by volume), the desulfurization and denitrification efficiency were maintained at levels greater than 90% and 80% for 30 min and 15 min, respectively. The C-O content increased, and the C=C and -OH content decreased after undergoing desulfurization and denitrification. The desulfurization and denitrification products were primarily sulfate and nitrate. This provides theoretical support for the application of microwave modified active coke in low temperature desulfurization and denitrification.


Sign in / Sign up

Export Citation Format

Share Document