scholarly journals Interleukins Affect Equine Endometrial Cell Function: Modulatory Action of Ovarian Steroids

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Z. Szóstek ◽  
Antonio M. Galvão ◽  
Takuo Hojo ◽  
Kiyoshi Okuda ◽  
Dariusz J. Skarzynski

The aim of the present study was to investigate the interaction between ovarian steroids, interleukins and prostaglandins (PG) in equine epithelial and stromal cells in vitro. In Experiment 1, cells were exposed to IL-1α(10 ng/mL), IL-1β(10 ng/mL) or IL-6 (10 ng/mL) for 24 h and cell proliferation was determined using MTT. In Experiment 2, cells were exposed to progesterone (P4; 10−7 M); 17-βestradiol (E2; 10−9 M) or P4+E2for 24 h and later medium was replaced with a fresh one treated with IL-1α, IL-1βor IL-6 (10 ng/mL, each) for 24 h. The oxytocin (OT; 10−7 M) was used as a positive control. In Experiment 3, cells were exposed to P4(10−7 M), E2(10−9 M) or P4+E2for 24 h and theIL receptormRNAs transcription was determined using Real-time PCR. Prostaglandins concentration was determined using the direct enzyme immunoassay (EIA) method. Our findings reveal a functional linking between ovarian steroids and IL-stimulated PG secretion by equine endometrial cells. This interaction could be one of the mechanisms responsible for endometrial local orchestrating events during the estrous cycle and early pregnancy.

2014 ◽  
Vol 220 (3) ◽  
pp. 263-276 ◽  
Author(s):  
Anna Z Szóstek ◽  
António M Galvão ◽  
Graça M Ferreira-Dias ◽  
Dariusz J Skarzynski

This study aimed to evaluate the influence of ovarian steroids on equine endometrial epithelial and stromal cells, specifically i) prostaglandin (PG) production in a time-dependent manner, ii) specific PG synthases mRNA transcription and protein expression, and iii) cell proliferation. After passage I, cells were exposed to vehicle, oxytocin (OT, positive control, 10−7M), progesterone (P4, 10−7M), 17β estradiol (E2, 10−9M), or P4+E2for 12, 24, 48, or 72 h. Following treatment, PG concentration was determined using the direct enzyme immunoassay (EIA) method. Alterations inPGsynthases mRNA transcriptions,PGsynthases protein expression, and cell proliferation in response to the treatments were determined after 24 h using real-time PCR, western blot, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide respectively. After 24 h, E2and P4+E2increased PGE2and PGF2αsecretion as well as specific prostaglandin-endoperoxide synthase-2 (PTGS2), PGE2synthases (PGES), and PGF2αsynthases (PGFS) expression in the epithelial cells (P<0.05). Additionally, E2and P4+E2increased PTGS2 expression in stromal cells after 24 h (P<0.05). In stromal cells, P4+E2increased PGE2production as well as PGES expression after 24 h (P<0.05). Both E2and P4+E2increased PGF2αproduction by stromal cells after 24 h (P<0.05). Ovarian steroids affected proliferation of stromal and epithelial cells during the 24-h incubation period (P<0.05). We provide evidence that ovarian steroids affect PG production in equine endometrial cells, upregulating PTGS2, PGES, and PGFS expression. Ovarian steroid-stimulated PG production could be an important mechanism occurring in the equine endometrium that is involved in the regulation of the estrous cycle and early pregnancy.


2013 ◽  
Vol 220 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Dang-Dang Li ◽  
Ying-Jie Gao ◽  
Xue-Chao Tian ◽  
Zhan-Qing Yang ◽  
Hang Cao ◽  
...  

Tryptophan 2,3-dioxygenase (Tdo2) is a rate-limiting enzyme which directs the conversion of tryptophan to kynurenine. The aim of this study was to examine the expression and regulation of Tdo2 in mouse uterus during decidualization. Tdo2 mRNA was mainly expressed in the decidua on days 6–8 of pregnancy. By real-time PCR, a high level of Tdo2 expression was observed in the uteri from days 6 to 8 of pregnancy, although Tdo2 expression was observed on days 1–8. Simultaneously, Tdo2 mRNA was also detected under in vivo and in vitro artificial decidualization. Estrogen, progesterone, and 8-bromoadenosine-cAMP could induce the expression of Tdo2 in the ovariectomized mouse uterus and uterine stromal cells. Tdo2 could regulate cell proliferation and stimulate the expression of decidual marker Dtprp in the uterine stromal cells and decidual cells. Overexpression of Tdo2 could upregulate the expression of Ahr, Cox2, and Vegf genes in uterine stromal cells, while Tdo2 inhibitor 680C91 could downregulate the expression of Cox2 and Vegf genes in uterine decidual cells. These data indicate that Tdo2 may play an important role during mouse decidualization and be regulated by estrogen, progesterone, and cAMP.


2020 ◽  
Vol 245 (3) ◽  
pp. 357-368 ◽  
Author(s):  
Yan Su ◽  
Sujuan Guo ◽  
Chunyan Liu ◽  
Na Li ◽  
Shuang Zhang ◽  
...  

Embryo implantation is essential for normal pregnancy. Decidualization is known to facilitate embryo implantation and maintain pregnancy. Uterine stromal cells undergo transformation into decidual cells after embryo attachment to the endometrium. Pyruvate kinase M2 (PKM2) is a rate limiting enzyme in the glycolysis process which catalyzes phosphoenolpyruvic acid into pyruvate. However, little is known regarding the role of PKM2 during endometrial decidualization. In this study, PKM2 was found to be mainly located in the uterine glandular epithelium and luminal epithelium on day 1 and day 4 of pregnancy and strongly expressed in the decidual zone after embryo implantation. PKM2 was dramatically increased with the onset of decidualization. Upon further exploration, PKM2 was found to be more highly expressed at the implantation sites than at the inter-implantation sites on days 5 to 7 of pregnancy. PKM2 expression was also significantly increased after artificial decidualization both in vivo and in vitro. After PKM2 expression was knocked down by siRNA, the number of embryo implantation sites in mice on day 7 of pregnancy was significantly reduced, and the decidualization markers BMP2 and Hoxa10 were also obviously downregulated in vivo and in vitro. Downregulated PKM2 could also compromise cell proliferation in primary endometrial stromal cells and in Ishikawa cells. The migration rate of Ishikawa cells was also obviously suppressed by si-PKM2 according to the wound healing assay. In conclusion, PKM2 might play an important role in decidualization during early pregnancy, and cell proliferation might be one pathway for PKM2 regulated decidualization.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Makri ◽  
M Castellanos-Uribe ◽  
S May ◽  
W Maalouf

Abstract Study question Whether cell-free microRNAs are part of the embryo-maternal interactome with possible effects on processes related to implantation. Summary answer Specific microRNAs cause major transcriptomic changes in uterine cells and alter cellular proliferation which is pivotal for the implantation of the incoming embryo. What is known already A plethora of molecules present at the uterine luminal fluid including cytokines, growth factors, and adhesion proteins are involved in implantation. However little is known about the roles of extracellular microRNAs (miRNAs) at the embryo-maternal interface. MicroRNAs act mainly as gene regulators and a single miRNA can have thousands of gene targets. MiRNAs are released by blastocysts and uterine cells internalize miRNAs that are present in the extracellular environment. To date there is limited evidence on the molecular actions of these cell-free miRNAs and their effects on processes related to implantation. Study design, size, duration Human endometrial stromal cells (hESCs) were cultured in complete growth medium for 8 consecutive passages. A miRNA mimic experiment in 6 replications was carried out in which endometrial cells were transfected with miR–371a. Gene changes in the hESCs were studied with genome-wide microarray technology and the results were validated in vitro with PCR. Participants/materials, setting, methods The miR–371a mimic was transfected in hESCs using a Lipofectamine reagent. RNA was extracted and the samples were processed with microarray Clariom™ Human Assays using Affymetrix®. The transcriptomic profiles between transfected and control cells were compared using Partek®. Differentially expressed genes were considered significant when p-value was &lt;0.05, false discovery rate, FDR ≤ 0.05 with Benjamini-Hochberg correction, and fold-change of &gt; 1.5 or &lt; –1.5. Functional enrichment analysis was carried out using WebGestalt and Enrichr. Main results and the role of chance MiR–371a altered the expression of 4.760 genes in endometrial cells (p &lt; 0.05, fold-change 1.5). A total of 16 biological processes, 23 cellular components, and 24 molecular pathways were disrupted by this miRNA. WebGestalt analysis found 159 enriched categories including increase of negative cell cycle regulation, apoptosis signalling, and cycle arrest and decreased cell proliferation. Cell cycle was one of the most affected pathways in KEGG analysis with at least 54 genes dysregulated. Mammalian phenotype ontology analysis found 4.818 affected phenotypes, including decreased cell proliferation (58 genes), increased apoptosis (48 genes) and abnormal cell cycle (41 genes). Key-genes of endometrial proliferation at the window of implantation were significantly downregulated, including: CD44, PGR; IGFs, FGFs, and HAND2. Moreover, at least 25% decreased hESCs proliferation was verified in vitro after transfection. These negative effects of miR–371a in cell cycle could disturb implantation of the incoming embryo, since intense cellular proliferation is necessary for establishment of the implantation site. Limitations, reasons for caution These results are limited to miR–371a actions on human endometrial stromal cells. It is likely that miRNAs, cytokines, growth factors, and other molecules form complex regulatory networks that control uterine receptivity and embryo implantation. Wider implications of the findings: MiRNAs are important mediators of the embryo-maternal interactome. Their actions are likely involved in implantation-related processes including inter-cellular communication, decidualization, adhesion, invasion, and establishment of the implantation site. Embryo-secreted miRNAs change the transcriptome of the neighboring endometrial cells with effects on implantation-related pathways, serving thus secretory functions. Trial registration number N/A


Endocrinology ◽  
2021 ◽  
Author(s):  
Tiago H C De Bem ◽  
Haidee Tinning ◽  
Elton J R Vasconcelos ◽  
Dapeng Wang ◽  
Niamh Forde

Abstract The molecular interactions between the maternal environment and the developing embryo that are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multi-cellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of non-pregnant cows in the early-luteal phase (Day 4-7), were seeded in the upper chamber of the device (epithelial cells; 4-6 10 4 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 10 4 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0 or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) were performed at a flow rate of 1µL/min for 72 hr. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid (ULF) were determined by RNA-sequencing and Tandem Mass Tagging Mass Spectrometry (TMT-MS), respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (p&lt;0.05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight one potential mechanism by which changes to maternal glucose and insulin alter uterine function.


1990 ◽  
Vol 2 (4) ◽  
pp. 311 ◽  
Author(s):  
LA Salamonsen ◽  
JK Findlay

Prostaglandin (PG) synthase has been localized by immunocytochemistry within the ovine uterus throughout the oestrous cycle and in early pregnancy. On Day 4 of the cycle, PG synthase was located primarily in the stromal cells in caruncular and intercaruncular tissue with little staining in the epithelium. On Days 14 through to 16, the most intense staining was in the luminal epithelial cells (caruncular and intercaruncular) and in epithelial cells of glands close to the uterine lumen. PG synthase was also located in the intercaruncular stromal cells, particularly close to the myometrium. Staining for the enzyme on Day 10 was intermediate between that of Day 4 and Day 14. On Day 15 of pregnancy, the pattern of staining was identical to that on Day 15 of the cycle, with no detectable difference in intensity. When endometrial cells (cycle, Day 14) were cultured with and without ovine trophoblast protein-1 (3 ng mL-1) in vitro, release of PGE and PGF2 alpha was attenuated (54% and 47% of control respectively) but no differences were observed in the intensity of staining for PG synthase in the cells. These results demonstrate marked cyclical changes in the endometrial cell types producing PGs, suggesting differential regulation of PG synthase. In addition, it appears that conceptus-induced changes in PGF2 alpha release do not occur via changes in the concentration or cellular localization of PG synthase, but rather that the activity of the enzyme is modified.


2020 ◽  
Author(s):  
Tiago H. C. De Bem ◽  
Haidee Tinning ◽  
Elton J. R. Vasconcelos ◽  
Dapeng Wang ◽  
Niamh Forde

ABSTRACTThe molecular interactions between the maternal environment and developing embryo that are key for early pregnancy success are known to be influenced by factors such as the metabolic status. We are, however, limited in our understanding of the mechanism by which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success. Here we report for the first time the use of endometrium-on-a-chip microfluidics approach to produce a multi-cellular endometrium in vitro, that is exposed to glucose and insulin concentrations associated with maternal metabolic stressors. Following isolation of endometrial cells (epithelial and stromal) from the uteri of non-pregnant cows in early-luteal phase (Day 4-7 approximately) epithelial cells were seeded into the upper chamber (4-6 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 104 cells/mL). Three different concentration of glucose 1) 0.5 mM 2) 5.0 mM or 3) 50 mM or insulin 1) Vehicle, 2) 1 ng/mL or 3) 10 ng/mL were performed in the endometrial cells at a flow rate of 1µL/min for 72 hr to mimic the rate of secretion in vivo. Quantitative differences in the transcriptomic response of the cells and the secreted proteome of in vitro-derived uterine luminal fluid (ULF) were determined by RNA-sequencing and TMT respectively. Changes in maternal glucose altered 21 and 191 protein coding genes in epithelial and stromal cells respectively (p<0.05). While there was a dose-dependent quantitative change in protein secretome (1 and 23 proteins). Insulin resulted in limited transcriptional changes including insulin-like binding proteins that were cell specific (5, 12, and 20) but altered the quantitative secretion of 196 proteins including those involved in extracellular matrix-receptor interaction and proteoglycan signaling in cancer. Collectively, these highlight the potential mechanism by which changes to maternal glucose and insulin alter uterine function.


2021 ◽  
Author(s):  
Yi-yi Wang ◽  
Hua Duan ◽  
Sha Wang ◽  
Yong-jun Quan ◽  
Jun-hua Huang ◽  
...  

Abstract Adenomyosis (ADS) is an estrogen-dependent gynecological disease with unspecified etiopathogenesis. Local hyperestrogenism may serve a central role in contributing the origin of ADS. Talin1 is mostly identified to be overexpressed and involved in the progression of numerous human carcinomas through mediating cell proliferation, adhesion and motility. Whether Talin1 exerts an oncogenic role in the development of ADS and presents an extra impact on the efficacy of estrogen, no relevant data are available yet. Here we demonstrated that the adenomyotic eutopic and ectopic endometrial stromal cells (ADS_Eu_ESC and ADS_Ec_ESC) treated with β-estradiol (β-E2) presented stronger proliferative and proangiogenetic capacities, accompanied by increased expression of PCNA, Ki67, VEGFB and ANGPTL4 proteins, compared with the controls. Meanwhile, these promoting effects were abrogated in the presence of Fulvestrant (ICI 182780, an estrogen-receptor antagonist). Aberrantly Upregulation of Talin1 mRNA and protein level was observed in ADS endometrial specimens and stromal cells. Through performing functional experiments in vitro, we further determined that merely overexpression of Talin1 (OV-Talin1) also enhanced ADS stromal cell proliferation and pro-angiogenesis, while the most pronounced facilitating effects were found in the co-intervention group of Talin1 overexpression plus β-E2 treatment. Results from the xenograft model showed that the hypodermic endometrial lesions from the co-treatment group with OV-Talin1 and β-E2 had the highest mean weight and volume, compared with that of individual OV-Talin1 or β-E2 treatment. The expression levels of PCNA, Ki67, VEGFB and ANGPTL4 in the lesions were correspondingly elevated most significantly in the co-treated group. Our findings unveiled that abnormally overexpressed Talin1 cooperated with E2 in stimulating ADS endometrial stromal cell proliferation and neovascularization, synergistically promoting the growth and survival of ectopic lesions. These results may be beneficial to provide a new insight for clarifying the pathogenesis of ADS.


Reproduction ◽  
2016 ◽  
Vol 151 (5) ◽  
pp. 517-526 ◽  
Author(s):  
Keisuke Kozai ◽  
Shota Tokuyama ◽  
Anna Z Szóstek ◽  
Yuko Toishi ◽  
Nobuo Tsunoda ◽  
...  

AbstractIn mares, prostaglandin F2α(PGF2α) secreted from the endometrium is a major luteolysin. Some domestic animals have an auto-amplification system in which PGF2αcan stimulate its own production. Here, we investigated whether this is also the case in mares. In anin vivostudy, mares at the mid-luteal phase (days 6–8 of estrous cycle) were injected i.m. with cloprostenol (250 µg) and blood samples were collected at fixed intervals until 72 h after treatment. Progesterone (P4) concentrations started decreasing 45 min after the injection and continued to decrease up to 24 h (P < 0.05). In turn, 13,14-dihydro-15-keto-PGF2α(PGFM) metabolite started to increase 4h after an injection and continued to increase up to 72 h (P < 0.05). PGF receptor (PTGFR) mRNA expression in the endometrium was significantly higher in the late luteal phase than in the early and regressed luteal phases (P < 0.05).In vitro, PGF2αsignificantly stimulated (P < 0.05) PGF2αproduction by endometrial tissues and endometrial epithelial and stromal cells and significantly increased (P < 0.05) the mRNA expression of prostaglandin-endoperoxide synthase-2 (PTGS2), an enzyme involved in PGF2αsynthesis in endometrial cell. These findings strongly suggest the existence of an endometrial PGF2αauto-amplification system in mares.


Reproduction ◽  
2018 ◽  
Author(s):  
Xuan-Tong Liu ◽  
Hui-Ting Sun ◽  
Zhong-Fang Zhang ◽  
Ru-Xia Shi ◽  
Li-Bing Liu ◽  
...  

It has been reported that the impaired cytotoxicity of natural killer (NK) cells and abnormal cytokines that are changed by the interaction between ectopic endometrial cells and immune cells is indispensable for the initiation and development of endometriosis (EMS). However, the mechanism of NK cells dysfunction in EMS remains largely unclear. Here, we found that NK cells in peritoneal fluid from women with EMS highly expressed indoleamine 2,3-dioxygenase (IDO). Furthermore, IDO+NK cells possessed lower NKp46 and NKG2D but higher IL-10 than that of IDO-NK. Co-culture with endometrial stromal cells (nESCs) from healthy control or ectopic ESCs (eESCs) from women with EMS led to a significant increase in the IDO level in NK cells from peripheral blood, particularly eESCs, and an anti-TGF-β neutralizing antibody suppressed these effects in vitro. NK cells co-cultured with ESC more preferentially inhibited the viability of nESCs than eESCs did, and pretreating with 1-methyl-tryptophan (1-MT), an IDO inhibitor, reversed the inhibitory effect of NK cells on eESC viability. These data suggest that ESCs induce IDO+NK cells differentiation partly by TGF-β, and that IDO further restricts the cytotoxicity of NK cells in response to eESCs, which provides a potential therapeutic strategy for EMS patients, particularly those with a high number of impaired cytotoxic IDO+NK cells.


Sign in / Sign up

Export Citation Format

Share Document