scholarly journals Elements of the B Cell Signalosome Are Differentially Affected by Mercury Intoxication

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Randall F. Gill ◽  
Michael J. McCabe ◽  
Allen J. Rosenspire

It has been suggested that environmental exposures to mercury contribute to autoimmune disease. Disruption of BCR signaling is associated with failure of central tolerance and autoimmunity, and we have previously shown that low levels of Hg2+interfere with BCR signaling. In this report we have employed multiparametric phosphoflow cytometry, as well as a novel generalization of the Overton algorithm from one- to two-dimensional unimodal distributions to simultaneously monitor the effect of low level Hg2+intoxication on activation of ERK and several upstream elements of the BCR signaling pathway in WEHI-231 B cells. We have found that, after exposure to low levels of Hg2+, only about a third of the cells are sensitive to the metal. For those cells which are sensitive, we confirm our earlier work that activation of ERK is attenuated but now report that Hg2+has little upstream effect on the Btk tyrosine kinase. On the other hand, we find that signaling upstream through the Syk tyrosine kinase is actually augmented, as is upstream activation of the B cell signalosome scaffolding protein BLNK.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Danling Gu ◽  
Hanning Tang ◽  
Jiazhu Wu ◽  
Jianyong Li ◽  
Yi Miao

AbstractB cell receptor (BCR) signaling is involved in the pathogenesis of B cell malignancies. Activation of BCR signaling promotes the survival and proliferation of malignant B cells. Bruton tyrosine kinase (BTK) is a key component of BCR signaling, establishing BTK as an important therapeutic target. Several covalent BTK inhibitors have shown remarkable efficacy in the treatment of B cell malignancies, especially chronic lymphocytic leukemia. However, acquired resistance to covalent BTK inhibitors is not rare in B cell malignancies. A major mechanism for the acquired resistance is the emergence of BTK cysteine 481 (C481)  mutations, which disrupt the binding of covalent BTK inhibitors. Additionally, adverse events due to the off-target inhibition of kinases other than BTK by covalent inhibitors are common. Alternative therapeutic options are needed if acquired resistance or intolerable adverse events occur. Non-covalent BTK inhibitors do not bind to C481, therefore providing a potentially effective option to patients with B cell malignancies, including those who have developed resistance to covalent BTK inhibitors. Preliminary clinical studies have suggested that non-covalent BTK inhibitors are effective and well-tolerated. In this review, we discussed the rationale for the use of non-covalent BTK inhibitors and the preclinical and clinical studies of non-covalent BTK inhibitors in B cell malignancies.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1434-1434 ◽  
Author(s):  
Jae-Woong Lee ◽  
Zhengshan Chen ◽  
Huimin Geng ◽  
Gang Xiao ◽  
Eugene PARK ◽  
...  

Abstract Background and hypothesis: CD25 (IL2RA) represents the α chain of the interleukin 2 receptor on T cells and plays an important role in the maintenance of regulatory T (Treg) cells, hence preventing T cell autoimmunity. In a comprehensive gene expression analysis, we found that CD25 is specifically upregulated by pre-B cell receptor (pre-BCR) signaling during early B cell development and oncogenic tyrosine kinase that mimic pre-BCR signaling (e.g. in Ph+ ALL and Ph-like ALL). In adults with Ph+ ALL (ECOG; MDACC) and children with Ph-like ALL (P9906) patients with CD25 expression at the time of diagnosis have a particularly poor outcome (n=416; P=0.005). For these reasons, we studied the function of CD25 in B cell development and leukemia in a series of genetic experiments. Results: Unlike T cells, CD25 (IL2RA) does not function as IL2 receptor chain in B cells and B-lineage ALL: CD25 expressed on B-lineage cells did not pair with IL2Rb and g-chains and was not responsive to IL2. Il2ra-/- B cells were arrested at the pre-B cell stage with hyperactive pre-BCR downstream signaling including SRC, BTK and ERK. In the presence of CD25, Il2ra+/+ B cells responded to engagement of the pre-BCR with phosphorylation of pre-BCR downstream tyrosine kinases and coordinated release of Ca2+ from cytoplasmic stores. In the absence of CD25 (Il2ra-/-), the pre-BCR signals autonomously, resulting in uncoordinated Ca2+ oscillations of variable duration. While CD25 does not function as IL2 receptor chain in B cells, it coordinates pre-BCR-dependent signal transduction and regulates its intensity. The pre-BCR related tyrosine kinase BTK is phosphorylated by BCR-ABL1 in Ph+ ALL and other tyrosine kinase oncogenes in Ph-like ALL (Chen et al., 2015). Interestingly, overexpression of a constitutively active form of BTK resulted in strong upregulation of CD25 surface expression. Conversely, the BTK-inhibitor ibrutinib abolished CD25 expression suggesting that feedback control between pre-BCR signaling and CD25 requires BTK. The ability of CD25 to stabilize oncogenic signaling strength in Ph+ ALL and Ph-like ALL was important for leukemia-initiation and development of fatal disease. In the absence of CD25, Il2ra-/- ALL cells showed impaired proliferation and colony formation. Serial transplantation experiments revealed a profound defect of Il2ra-/- ALL cells to initiate leukemia. 100-times more cells were required to cause fatal disease. In addition, CD25 expression mediated drug-resistance in ALL cells: In patient-derived pre-B ALL cells with heterogeneous CD25 expression, vincristine selectively induced apoptosis in CD25Low cells but spared CD25High ALL cells. Combination with an anti-CD25 immunotoxin efficiently eradiated CD25High leukemia cells and sensitized the ALL cell population to treatment with vincristine. To elucidate the mechanism of how CD25 coordinates negative feedback control of pre-BCR signaling or its oncogenic mimics, we focused on its short (13aa) cytoplasmic tail, which includes two phosphorylation sites (S268 and T271) that are known substrates for serine/threonine protein kinase, PKCα. To identify cytoplasmic interaction partners of CD25, we overexpressed a Flag-tagged truncated form of CD25 including a myristoylation signal for constitutive membrane localization, transmembrane domain and cytoplasmic tail. Immunoprecipitation (IP; Flag) followed by 2D mass spectrometry revealed strong interactions of PP2A with cytoplasmic tail of CD25. Western blots showed additional strong interactions of the cytoplasmic tail of CD25 with inhibitory phosphatases PTEN, SHP1 and SHIP1. Importantly, reconstitution of myristoylated CD25 tail but not a mutant construct lacking the serine/threonine motif (S268A/T271A) rescued proliferation and survival defects of Il2ra-/- ALL cells. Conclusion: We identified CD25 as a surface receptor that mediates membrane recruitment of PP2A, PTEN, SHP1 and SHIP1, which balances fluctuations in signaling output from a pre-B cell receptor or its oncogenic mimic in ALL cells (e.g. BCR-ABL1 in Ph+ ALL). We propose that CD25-mediated negative feedback control stabilizes oncogenic tyrosine kinase signaling and mediates drug-resistance in Ph+ ALL and Ph-like ALL cells. Targeted inhibition using CD25-directed immunotoxins may be useful in new approaches to overcome drug-resistance in Ph+ ALL and Ph-like ALL. Disclosures No relevant conflicts of interest to declare.


1994 ◽  
Vol 179 (5) ◽  
pp. 1725-1729 ◽  
Author(s):  
T Kurosaki ◽  
M Takata ◽  
Y Yamanashi ◽  
T Inazu ◽  
T Taniguchi ◽  
...  

Signaling through the B cell antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins. The BCR associates with two classes of tyrosine kinase: Src-family kinase (Src-protein-tyrosine kinase [PTK]; Lyn, Fyn, Blk, or Lck) and Syk kinase. We have investigated the interaction between the Src-PTK and the Syk kinase in the BCR signaling. In contrast to wild-type B cells, BCR-mediated tyrosine phosphorylation of Syk and activation of its in vitro kinase activity were profoundly reduced in lyn-negative cells. The requirement of the Src-PTK to induce tyrosine phosphorylation and activation of Syk was also demonstrated by cotransfection of syk and src-PTK cDNAs into COS cells. These results suggest that the Src-PTK associated with BCR phosphorylates the tyrosine residue(s) of Syk upon receptor stimulation, enhancing the activity of Syk.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1324-1324
Author(s):  
Elisa Mandato ◽  
Qingsheng Yan ◽  
Jing Ouyang ◽  
Julia Paczkowska ◽  
Yan Qin ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease comprised of five subtypes including a subset of poor-prognosis activated B cell (ABC)-enriched tumors with frequent MYD88L265P mutations, often in association with CD79B alterations (Cluster 5 DLBCLs) (Nat. Med. 2018; 24:679-690). Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) have similar genetic signatures including recurrent MYD88L265P mutations and concurrent CD79B alterations (Blood 2016; 127: 869-81). These findings prompted us to evaluate a potential role for MYD88L265P in proximal B-cell receptor (BCR) signaling, in addition to its defined function as an intermediary in the Toll-Like Receptor (TLR) pathway and downstream NF-kB activation. In previous studies by Jabara et al., wild-type (WT) MYD88 was found to be constitutively associated with the DOCK8 adapter and the PYK2 tyrosine kinase in normal B-cells (Nat. Immunol. 2012; 13:612-20). In this setting, physiologic ligation of TLR9 with CpG oligodeoxynucleotides (CpG) induced PYK2-mediated phosphorylation of DOCK8, recruitment of Src kinases, including LYN, and downstream activation of the proximal BCR pathway member, spleen tyrosine kinase (SYK) (Nat. Immunol. 2012; 13:612-20). We postulated that mutated MYD88L265P might similarly augment proximal BCR signaling in DLBCLs in the absence of physiologic (CpG-induced) TLR9 signaling. Using three DLBCL cell lines (OCI-Ly1, SU-DHL4 and OCI-Ly7) with intact BCR signaling and WT endogenous MYD88 and CD79B, we first established that physiologic CpG activation of TLR signaling induced the phosphorylation of PYK2 and the proximal BCR signaling components, SYK and Bruton's tyrosine kinase (BTK). Thereafter, we genetically engineered these three DLBCL cell lines to express MYD88 L265P or MYD88 WT, alone or in association with CD79B Y196F. In all three cell lines, the co-expression of MYD88 L265P and CD79B Y196F significantly increased magnitude and duration of SYK and BTK phosphorylation following BCR crosslinking. These findings highlight the likely role of MYD88L265P in CD79BY196F-associated proximal BCR signaling in DLBCL. To elucidate the potential role of the DOCK8 adapter in MYD88 L265P-augmented BCR signaling, we first assessed the colocalization of MYD88 WT or MYD88 L265P with DOCK8 in the same three genetically engineered DLBCL cell lines using proximity ligation assays (PLA), which detect protein-protein interactions at less than 40 nm in situ. In each of these cell lines, we detected significantly increased co-localized MYD88 L265P/DOCK8 signals in comparison to MYD88 WT/DOCK8 signals (p<.0001, all). Additionally, there were significantly increased co-localized DOCK8/LYN signals in DLBCL cell lines that expressed MYD88 L265P rather than MYD88 WT (p<.0001, all). These data provide the first direct evidence of an enhanced association between MYD88 L265P, DOCK8 and LYN in BCR-dependent DLBCLs and a basis for enhanced BCR signaling in primary tumors with concurrent MYD88L265P and CD79B genetic alterations. We next analyzed the consequences of MYD88 L265P-associated, DOCK8-dependent increased proximal BCR signaling by depleting DOCK8 in BCR-dependent DLBCL cells with endogenous MYD88L265P/CD79BY196F alterations (HBL1 and TMD8) or endogenous unmutated MYD88 WT/CD79B WT (OCI-Ly1 and SU-DHL4). ShRNA-mediated DOCK8 knockdown (KD) significantly decreased BCR-mediated phosphorylation of SYK and BTK in MYD88L265P/CD79BY196F DLBCL cell lines but not in lines with MYD88 WT/CD79B WT, highlighting the specific role of DOCK8 in MYD88 L265P-associated proximal BCR signaling. Of great interest, DOCK8 KD selectively decreased the proliferation of MYD88L265P/CD79BY196F, but not MYD88WT/CD79BWT, DLBCLs (p<.004, HBL1 and p<.009, TMD8; p = non sig., OCI-Ly1 and SU-DHL4). Additionally, DOCK8 KD significantly increased the efficacy of chemical PI3Kα/δ (copanlisib) and BTK (ibrutinib) inhibition in MYD88L265P/CD79BY196F DLBCLs (HBL1 and TMD8). Taken together, these data identify DOCK8 as an intermediary in MYD88L265P-driven proximal BCR signaling and a possible treatment target in LBCLs with co-occurring MYD88L265P/CD79BY196F mutations. Disclosures Shipp: AstraZeneca: Consultancy, Research Funding; Immunitas Therapeutics: Consultancy; Bristol Myers Squibb: Research Funding; Merck: Research Funding; Bayer: Other: Institution: Research Grant/Funding; Abbvie: Other: Institution: Research Grant/Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 303-303
Author(s):  
Cody Paiva ◽  
Taylor Rowland ◽  
Olga Danilova ◽  
Bhargava Sreekantham ◽  
Stephen E Spurgeon ◽  
...  

Abstract Although small molecule inhibitors of BCR-associated kinases (BCRi) revolutionized therapy in CLL, they provide incomplete responses. Soluble mediators emanating from the tumor microenvironment perpetrate CLL cell survival and may account for resistance to BCRi. Tumor necrosis factor receptor superfamily ligands BAFF and APRIL induce NFκB, which in turn upregulates pro-survival Bcl-2 family proteins and thereby drives anti-apoptotic responses.The exact roles of the individual NFκB pathways, as well as the implications of targeting BCR in context of BAFF signaling in CLL remain understudied. We explored the mechanistic underpinnings of CLL cell survival in response to BAFF signaling, uncovering the functional significance of the BCR-associated kinases and Bcl-2 family proteins in this setting. Peripheral blood mononuclear cells were isolated from patients with CLL. We established a novel BAFF-expressing stromal co-culture model and referenced it to control, CD40L-expressing stroma and soluble BAFF. We employed inhibitors of Bruton tyrosine kinase (BTK, ibrutinib), phosphoinositide-3 kinase (PI3K, idelalisib) and spleen tyrosine kinase (SYK, entospletinib) and measured CLL cell apoptosis, migration, NFκB activity, protein and mRNA expression by flow cytometry, immunoblotting, ELISA, RT-PCR and immunocytochemistry. CLL cells co-cultured with BAFF-expressing stroma were resistant to spontaneous apoptosis (12.3±3.2% after 24 h, vs 34.8±6.2% off stroma) and chemotherapy agents (bendamustine, fludarabine). Gene expression profiling exposed the NFκB pathway gene targets as the most significantly upregulated upon BAFF stimulation (p<0.0001). We and others have shown that CD40L-expressing stroma induces canonical and non-canonical NFκB in CLL. By contrast, while BAFF led to strong activation of the non-canonical NFκB with processing of p100 (to p52) by 4 h and a 5-fold increase in p52 DNA-binding activity by 24 h, canonical NFκB (RelA) activation was less pronounced. BAFF predominantly induced Mcl-1, compared to CD40L which strongly upregulated Bcl-X. BCR is a major driver of canonical NFκB signaling in CLL. Thus, we studied whether BAFF co-opted BCR signaling in CLL. BAFF induced rapid (15 min) phosphorylation of the proximal BCR kinases SYKand LYN, sustained for up to 4 h, as well as ERK, in CLL cells. AKT activation occurred late (>2 h), suggesting that BAFF induced AKT independent of BCR. BAFF-mediated BCR activation did not correlate with IGHV mutational status. Like IgM, BAFF induced CLL cell chemotaxis. SYK inhibition effectively antagonized survival and chemotaxis of BAFF-stimulated CLL cells. By contrast, targeting BTK or PI3K was less effective. All BCRi's fully blocked canonical NFκB activation in BAFF-stimulated CLL cells (suggesting its dependence on BCR signaling), but none inhibited the non-canonical pathway. We found that entospletinib, but not other BCRi's, decreased Mcl-1 expression in CLL cells co-cultured with BAFF-expressing stroma. Unlike in IgM-stimulated cells, entospletinib did not promote Mcl-1 protein degradation. By contrast,, targeting SYK in BAFF-stimulated cells abrogated BAFF-mediated upregulation of pSTAT3, a transcription factor which regulates Mcl-1. This was accompanied by a decrease in Mcl-1 transcript, an effect mimicked by ruxolitinib, a JAK/STAT inhibitor. BAFF receptor signals via the TRAF3/NIK/IKK1 axis to induce non-canonical NFκB activation in neoplastic B-cells. We supposed that NIK (NFκB-inducing kinase) or IKK1 could be directly responsible for SYK activation by BAFF. Indeed, genetic knockdown of NIK resulted in decreased SYK activation, whereas IP experiments demonstrated that NIK directly complexed with SYK in BAFF-stimulated neoplastic B-cells, confirming NIK role in activation of BCR signaling. Thus, BAFF-mediated induction of BCR-associated kinases and Mcl-1 contributes to CLL cell survival. SYK inhibition is a promising therapeutic strategy uniquely poised to antagonize crosstalk between BAFF and BCR, thereby disrupting the pro-survival microenvironment signaling in CLL. Disclosures Spurgeon: Gilead Sciences: Research Funding; Bristol Myers Squibb: Research Funding; Acerta Pharma: Research Funding; Genentech: Research Funding; Janssen: Research Funding. Danilov:Prime Oncology: Honoraria; Dava Oncology: Honoraria; ImmunoGen: Consultancy; GIlead Sciences: Research Funding; Takeda: Research Funding; Astra Zeneca: Research Funding; Pharmacyclics: Consultancy.


2004 ◽  
Vol 200 (7) ◽  
pp. 927-934 ◽  
Author(s):  
Yen-Shing Ng ◽  
Hedda Wardemann ◽  
James Chelnis ◽  
Charlotte Cunningham-Rundles ◽  
Eric Meffre

Most polyreactive and antinuclear antibodies are removed from the human antibody repertoire during B cell development. To elucidate how B cell receptor (BCR) signaling may regulate human B cell tolerance, we tested the specificity of recombinant antibodies from single peripheral B cells isolated from patients suffering from X-linked agammaglobulinemia (XLA). These patients carry mutations in the Bruton's tyrosine kinase (BTK) gene that encode an essential BCR signaling component. We find that in the absence of Btk, peripheral B cells show a distinct antibody repertoire consistent with extensive secondary V(D)J recombination. Nevertheless, XLA B cells are enriched in autoreactive clones. Our results demonstrate that Btk is essential in regulating thresholds for human B cell tolerance.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6287-6296 ◽  
Author(s):  
Sarah E. M. Herman ◽  
Amber L. Gordon ◽  
Erin Hertlein ◽  
Asha Ramanunni ◽  
Xiaoli Zhang ◽  
...  

Abstract B-cell receptor (BCR) signaling is aberrantly activated in chronic lymphocytic leukemia (CLL). Bruton tyrosine kinase (BTK) is essential to BCR signaling and in knockout mouse models its mutation has a relatively B cell–specific phenotype. Herein, we demonstrate that BTK protein and mRNA are significantly over expressed in CLL compared with normal B cells. Although BTK is not always constitutively active in CLL cells, BCR or CD40 signaling is accompanied by effective activation of this pathway. Using the irreversible BTK inhibitor PCI-32765, we demonstrate modest apoptosis in CLL cells that is greater than that observed in normal B cells. No influence of PCI-32765 on T-cell survival is observed. Treatment of CD40 or BCR activated CLL cells with PCI-32765 results in inhibition of BTK tyrosine phosphorylation and also effectively abrogates downstream survival pathways activated by this kinase including ERK1/2, PI3K, and NF-κB. In addition, PCI-32765 inhibits activation-induced proliferation of CLL cells in vitro, and effectively blocks survival signals provided externally to CLL cells from the microenvironment including soluble factors (CD40L, BAFF, IL-6, IL-4, and TNF-α), fibronectin engagement, and stromal cell contact. Based on these collective data, future efforts targeting BTK with the irreversible inhibitor PCI-32765 in clinical trials of CLL patients is warranted.


Blood ◽  
2012 ◽  
Vol 120 (6) ◽  
pp. 1175-1184 ◽  
Author(s):  
Jennifer A. Woyach ◽  
Amy J. Johnson ◽  
John C. Byrd

Abstract Targeted therapy with imatinib and other selective tyrosine kinase inhibitors has transformed the treatment of chronic myeloid leukemia. Unlike chronic myeloid leukemia, chronic lymphocytic leukemia (CLL) lacks a common genetic aberration amenable to therapeutic targeting. However, our understanding of normal B-cell versus CLL biology points to differences in properties of B-cell receptor (BCR) signaling that may be amenable to selective therapeutic targeting. The applica-tion of mouse models has further expanded this understanding and provides information about targets in the BCR signaling pathway that may have other important functions in cell development or long-term health. In addition, overexpression or knockout of selected targets offers the potential to validate targets genetically using new mouse models of CLL. The initial success of BCR-targeted therapies has promoted much excitement in the field of CLL. At the present time, GS-1101, which reversibly inhibits PI3Kδ, and ibrutinib (PCI-32765), an irreversible inhibitor of Bruton tyrosine kinase, have generated the most promising early results in clinical trials including predominately refractory CLL where durable disease control has been observed. This review provides a summary of BCR signaling, tools for studying this pathway relevant to drug development in CLL, and early progress made with therapeutics targeting BCR-related kinases.


2003 ◽  
Vol 197 (11) ◽  
pp. 1511-1524 ◽  
Author(s):  
Hae Won Sohn ◽  
Hua Gu ◽  
Susan K. Pierce

Members of the Cbl family of molecular adaptors play key roles in regulating tyrosine kinase-dependent signaling in a variety of cellular systems. Here we provide evidence that in B cells Cbl-b functions as a negative regulator of B cell antigen receptor (BCR) signaling during the normal course of a response. In B cells from Cbl-b–deficient mice cross-linking the BCRs resulted in sustained phosphorylation of Igα, Syk, and phospholipase C (PLC)-γ2, leading to prolonged Ca2+ mobilization, and increases in extracellular signal–regulated kinase (ERK) and c-Jun NH2-terminal protein kinase (JNK) phosphorylation and surface expression of the activation marker, CD69. Image analysis following BCR cross-linking showed sustained polarization of the BCRs into large signaling-active caps associated with phosphorylated Syk in Cbl-b–deficient B cells in contrast to the BCRs in Cbl-b–expressing B cells that rapidly proceeded to form small, condensed, signaling inactive caps. Significantly, prolonged phosphorylation of Syk correlated with reduced ubiquitination of Syk indicating that Cbl-b negatively regulates BCR signaling by targeting Syk for ubiquitination.


Sign in / Sign up

Export Citation Format

Share Document