scholarly journals Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Suk Fun Chin ◽  
Siti Nur Akmar Mohd Yazid ◽  
Suh Cem Pang

Curcumin was loaded onto starch nanoparticles by usingin situnanoprecipitation method and water-in-oil microemulsion system. Curcumin loaded starch nanoparticles exhibited enhanced solubility in aqueous solution as compared to free curcumin. Effects of formulation parameters such as types of reaction medium, types of surfactant, surfactant concentrations, oil/ethanol ratios, loading time, and initial curcumin concentration were found to affect the particle size and loading efficiency (LF) of the curcumin loaded starch nanoparticles. Under optimum conditions, curcumin loaded starch nanoparticles with mean particles size of 87 nm and maximum loading efficiency of 78% were achieved. Curcumin was observed to release out from starch nanoparticles in a sustained way under physiological pH over a period of 10 days.

Planta Medica ◽  
2018 ◽  
Vol 84 (12/13) ◽  
pp. 976-984 ◽  
Author(s):  
Vieri Piazzini ◽  
Elisabetta Bigagli ◽  
Cristina Luceri ◽  
Anna Rita Bilia ◽  
Maria Camilla Bergonzi

AbstractA microemulsion system was developed and investigated as a novel oral formulation to increase the solubility and absorption of Salicis cortex extract. This extract possesses many pharmacological activities, in particular, it is beneficial for back pain and osteoarthritic and rheumatic complaints. In this work, after qualitative and quantitative characterization of the extract and the validation of an HPLC/diode array detector analytical method, solubility studies were performed to choose the best components for microemulsion formulation. The optimized microemulsion consisted of 2.5 g of triacetin, as the oil phase, 2.5 g of Tween 20 as the surfactant, 2.5 g of labrasol as the cosurfactant, and 5 g of water. The microemulsion was visually checked, characterized by light scattering techniques and morphological observations. The developed formulation appeared transparent, the droplet size was around 40 nm, and the ζ-potential result was negative. The maximum loading content of Salicis cortex extract resulted in 40 mg/mL. Furthermore, storage stability studies and an in vitro digestion assay were performed. The advantages offered by microemulsion were evaluated in vitro using artificial membranes and cells, i.e., parallel artificial membrane permeability assay and a Caco-2 model. Both studies proved that the microemulsion was successful in enhancing the permeation of extract compounds, so it could be useful to ameliorate the bioefficacy of Salicis cortex.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3469
Author(s):  
Cailong Xue ◽  
Xiaoqin Wei ◽  
Zhengwei Zhang ◽  
Yang Bai ◽  
Mengxue Li ◽  
...  

The porous carbonaceous precursor obtained from elutrilithe by adding pitch powder and solid SiO2 was employed for the first time in an in situ hydrothermal synthesis of LSX zeolite/AC composite. The synthesized samples were characterized by XRD, SEM, and N2 adsorption–desorption. The optimum conditions for the hydrothermal synthesis process were set as follows: gelling, aging, and crystallization. The time and temperature required for these steps were 24 h and 65 °C, 12 h and 20 °C, and 48 h and 65 °C, respectively. The molar ratios were (Na2O + K2O)/Al3O2 = 7.7, K2O/(K2O + Na2O) = 3. The potential applicability test of the product showed high CO2 working capacity, excellent CO2/CH4 and CO2/N2 selectivity, and high phenol adsorption capacity. These results suggest that the resultant product has excellent potential value in industrial application.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


Reproduction ◽  
2000 ◽  
pp. 325-335 ◽  
Author(s):  
A Calvo ◽  
LM Pastor ◽  
S Bonet ◽  
E Pinart ◽  
M Ventura

Lectin histochemistry was used to perform in situ characterization of the glycoconjugates present in boar testis and epididymis. Thirteen horseradish peroxidase- or digoxigenin-labelled lectins were used in samples obtained from healthy fertile boars. The acrosomes of the spermatids were stained intensely by lectins with affinity for galactose and N-acetyl-galactosamine residues, these being soybean, peanut and Ricinus communis agglutinins. Sertoli cells were stained selectively by Maackia ammurensis agglutinin. The lamina propria of seminiferous tubules showed the most intense staining with fucose-binding lectins. The Golgi area and the apical part of the principal cells of the epididymis were stained intensely with many lectins and their distribution was similar in the three zones of the epididymis. On the basis of lectin affinity, both testis and epididymis appear to have N- and O-linked glycoconjugates. Spermatozoa from different epididymal regions showed different expression of terminal galactose and N-acetyl-galactosamine. Sialic acid (specifically alpha2,3 neuraminic-5 acid) was probably incorporated into spermatozoa along the extratesticular ducts. These findings indicate that the development and maturation of boar spermatozoa are accompanied by changes in glycoconjugates. As some lectins stain cellular or extracellular compartments specifically, these lectins could be useful markers in histopathological evaluation of diseases of boar testis and epididymis.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


1983 ◽  
Author(s):  
K. Arulanandan ◽  
Y. Dafalias ◽  
L. R. Herrmann ◽  
A. Anandarajah ◽  
N. Meegoda

Sign in / Sign up

Export Citation Format

Share Document