scholarly journals Investigation of CO2 Enhanced Oil Recovery Using Dimensionless Groups in Wettability Modified Chalk and Sandstone Rocks

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Vahid Alipour Tabrizy

The paper addresses enhanced oil recovery in chalk and sandstone rocks by CO2 injection, with different wettability, porosity, and permeability as well as injection rate and flooding conditions. Results indicate that an increase in Bond number has a positive effect on oil recovery whereas for capillary number, there is a limit in which recovery is improving. This limit is estimated when the pressure drop by viscous force is approximately equal to the threshold balance between capillary and gravity forces. A dimensionless group is proposed that combines the effect of capillarity, injection rate, permeability, and CO2 diffusion on the oil recovery. Recovery from all experiments in this study and reported data in the literature shows a satisfactory relationship with the proposed group.

2019 ◽  
Vol 11 (6) ◽  
pp. 1652 ◽  
Author(s):  
Eunji Hong ◽  
Moon Jeong ◽  
Tae Kim ◽  
Ji Lee ◽  
Jin Cho ◽  
...  

By incorporating a temperature-dependent biokinetic and thermal model, the novel method, cold-water microbial enhanced oil recovery (MEOR), was developed under nonisothermal conditions. The suggested model characterized the growth for Bacillus subtilis (microbe) and Surfactin (biosurfactant) that were calibrated and confirmed against the experimental results. Several biokinetic parameters were obtained within approximately a 2% error using the cardinal temperature model and experimental results. According to the obtained parameters, the examination was conducted with several injection scenarios for a high-temperature reservoir of 71 °C. The results proposed the influences of injection factors including nutrient concentration, rate, and temperature. Higher nutrient concentrations resulted in decreased interfacial tension by producing Surfactin. On the other hand, injection rate and temperature changed growth condition for Bacillus subtilis. An optimal value of injection rate suggested that it affected not only heat transfer but also nutrient residence time. Injection temperature led to optimum reservoir condition for Surfactin production, thereby reducing interfacial tension. Through the optimization process, the determined optimal injection design improved oil recovery up to 53% which is 8% higher than waterflooding. The proposed optimal injection design was an injection sucrose concentration of 100 g/L, a rate of 7 m3/d, and a temperature of 19 °C.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yong Tang ◽  
Zhengyuan Su ◽  
Jibo He ◽  
Fulin Yang

This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.


2016 ◽  
Vol 27 (5) ◽  
pp. 524-541
Author(s):  
Ayub Elyasi ◽  
Kamran Goshtasbi ◽  
Hamid Hashemolhosseini

Carbon dioxide sequestration is an effective mechanism for enhanced oil recovery. In a carbon dioxide enhanced oil recovery project, the temperature of the injected carbon dioxide is usually considerably lower than the formation temperature. The heat transfer between the injected fluid, reservoir fluids, and rock has to be investigated in order to test the viability of the target formation to act as an effective enhanced oil recovery unit and to optimize the process. Simulation of carbon dioxide injection based on a suitable modeling is very important for explaining the fluid flow behavior of carbon dioxide in a reservoir. Geomechanical aspects between fluids and carbonate rocks can change porosity and permeability during carbon dioxide flooding which may significantly impact well injectivity, reservoir integrity, and oil recovery. This article presents development of a simulator using implementation of a program (FORTRAN 90 interface code) for coupled thermo-hydro-mechanical processes in multiphase reservoir modeling. The simulator is denoted ECLIPSE-ABAQUS, because it utilizes two established computer codes, ECLIPSE and ABAQUS, which are linked and jointly executed for analysis of coupled thermo-hydro-mechanical processes. The capabilities of the ECLIPSE-ABAQUS simulator are demonstrated on a complex coupled problems related to injection of carbon dioxide in an oil reservoir. The coupled thermo-hydro-mechanical analysis of the reservoir showed that the reservoir production rate/total and production time in the coupled thermo-hydro-mechanical simulation is more than the uncoupled one. Also permeability and porosity changes in the coupled thermo-hydro-mechanical simulation are different from the coupled hydro-mechanical simulation. Furthermore, the Finite Element Method analysis showed no sign of plastic strain under production and carbon dioxide injection scenarios in any part of the reservoir.


2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Gloria Gyanfi ◽  
Wilberforce Nkrumah Aggrey ◽  
Ernest Ansah Owusu ◽  
Kofi Ohemeng Prempeh

With most polymers employed in polymer enhanced oil recovery exhibiting one or both non-Newtonian behaviours that is shear thickening and thinning at different shear rate, it is expedient to analyse the impact of these non-Newtonian behaviours in polymer optimisation. CMG simulation suite was employed to analyse the permeability pinch-out formation with a five (5) spot injection well pattern for a 360days simulation run using a 90days polymer injection well cycling. Shear thinning polymer was found not to be conducive for lower permeable formation as a high percentage of the polymer was retained. NPV was affected by polymer injection rate which controlled polymer optimisation


Author(s):  
Miguel Frasquet ◽  
Manuel Silva

Solar steam generation for enhanced oil recovery has a significant potential at regions where, in addition to heavy oil reservoirs, solar resource is abundant. China ranks amongst the countries with greater heavy oil reserves. In addition, Western regions of China have a solar resource equivalent to that of places in which solar energy is being developed in a commercial scale. This paper addresses the technical feasibility of using concentrating solar collectors to produce the steam required in the recovery of heavy oil through thermal methods. Three locations have been selected for this study. In each location, three different reservoir injectivity scenarios have been taken into account: No injectivity limitation (as upper bound), partial limitation and full limitation (meaning that the injection rate cannot be greater than the design value for constant rate). In the first scenario, the surface model uses parabolic through collectors and direct steam generation. When injectivity is restricted, thermal storage becomes necessary in order to be able to inject the same amount of heat into the reservoir within the limits of the reservoir’s injectivity. Therefore, molten salts tower system with sensible storage is proposed as technology for the second scenario. In the third scenario, also parabolic through collectors are used but in this case, the solar system is coupled with conventional Once-Through Steam Generators (OTSGs) in a hybrid scheme (this approach represents the current state of the art).


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hamed Hematpur ◽  
Reza Abdollahi ◽  
Mohsen Safari-Beidokhti ◽  
Hamid Esfandyari

The growing demand for clean energy can be met by improving the recovery of current resources. One of the effective methods in recovering the unswept reserves is chemical flooding. Microemulsion flooding is an alternative for surfactant flooding in a chemical-enhanced oil recovery method and can entirely sweep the remaining oil in porous media. The efficiency of microemulsion flooding is guaranteed through phase behavior analysis and customization regarding the actual field conditions. Reviewing the literature, there is a lack of experience that compared the macroscopic and microscopic efficiency of microemulsion flooding, especially in low viscous oil reservoirs. In the current study, one-quarter five-spot glass micromodel was implemented for investigating the effect of different parameters on microemulsion efficiency, including surfactant types, injection rate, and micromodel pattern. Image analysis techniques were applied to represent the phase saturations throughout the microemulsion flooding tests. The results confirm the appropriate efficiency of microemulsion flooding in improving the ultimate recovery. LABS microemulsion has the highest efficiency, and the increment of the injection rate has an adverse effect on oil recovery. According to the pore structure’s tests, it seems that permeability has little impact on recovery. The results of this study can be used in enhanced oil recovery designs in low-viscosity oil fields. It shows the impact of crucial parameters in microemulsion flooding.


Author(s):  
A. A. Kazakov ◽  
V. V. Chelepov ◽  
R. G. Ramazanov

The features of evaluation of the effectiveness of flow deflection technologies of enhanced oil recovery methods. It is shown that the effect of zeroing component intensification of fluid withdrawal leads to an overestimation of the effect of flow deflection technology (PRP). Used in oil companies practice PRP efficiency calculation, which consists in calculating the effect on each production well responsive to subsequent summation effects, leads to the selective taking into account only the positive components of PRP effect. Negative constituents — not taken into account and it brings overestimate over to overstating of efficiency. On actual examples the groundless overstating and understating of efficiency is shown overestimate at calculations on applied in petroleum companies by a calculation.


Sign in / Sign up

Export Citation Format

Share Document