scholarly journals Polymer Optimisation- Shear Thinning or Thickening?

2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Gloria Gyanfi ◽  
Wilberforce Nkrumah Aggrey ◽  
Ernest Ansah Owusu ◽  
Kofi Ohemeng Prempeh

With most polymers employed in polymer enhanced oil recovery exhibiting one or both non-Newtonian behaviours that is shear thickening and thinning at different shear rate, it is expedient to analyse the impact of these non-Newtonian behaviours in polymer optimisation. CMG simulation suite was employed to analyse the permeability pinch-out formation with a five (5) spot injection well pattern for a 360days simulation run using a 90days polymer injection well cycling. Shear thinning polymer was found not to be conducive for lower permeable formation as a high percentage of the polymer was retained. NPV was affected by polymer injection rate which controlled polymer optimisation

2021 ◽  
Author(s):  
Bogdan-George Davidescu ◽  
Mathias Bayerl ◽  
Christoph Puls ◽  
Torsten Clemens

Abstract Enhanced Oil Recovery pilot testing aims at reducing uncertainty ranges for parameters and determining operating conditions which improve the economics of full-field deployment. In the 8.TH and 9.TH reservoirs of the Matzen field, different well configurations were tested, vertical versus horizontal injection and production wells. The use of vertical or horizontal wells depends on costs and reservoir performance which is challenging to assess. Water cut, polymer back-production and pressures are used to understand reservoir behaviour and incremental oil production, however, these data do not reveal insights about changes in reservoir connectivity owing to polymer injection. Here, we used consecutive tracer tests prior and during polymer injection as well as water composition to elucidate the impact of various well configurations on sweep efficiency improvements. The results show that vertical well configuration for polymer injection and production leads to substantial acceleration along flow paths but less swept volume. Polymer injection does not only change the flow paths as can be seen from the different allocation factors before and after polymer injection but also the connected flow paths as indicated by a change in the skewness of the breakthrough tracer curves. For horizontal wells, the data shows that in addition to acceleration, the connected pore volume after polymer injection is substantially increased. This indicates that the sweep efficiency is improved for horizontal well configurations after polymer injection. The methodology leads to a quantitative assessment of the reservoir effects using different well configurations. These effects depend on the reservoir architecture impacting the changes in sweep efficiency by polymer injection. Consecutive tracer tests are an important source of information to determine which well configuration to be used in full-field implementation of polymer Enhanced Oil Recovery.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1765
Author(s):  
Mohamed Adel Alzaabi ◽  
Juan Manuel Leon ◽  
Arne Skauge ◽  
Shehadeh Masalmeh

Polymer flooding has gained much interest within the oil industry in the past few decades as one of the most successful chemical enhanced oil recovery (CEOR) methods. The injectivity of polymer solutions in porous media is a key factor in polymer flooding projects. The main challenge that faces prediction of polymer injectivity in field applications is the inherent non-Newtonian behavior of polymer solutions. Polymer in situ rheology in porous media may exhibit complex behavior that encompasses shear thickening at high flow rates in addition to the typical shear thinning at low rates. This shear-dependent behavior is usually measured in lab core flood experiments. However, data from field applications are usually limited to the well bottom-hole pressure (BHP) as the sole source of information. In this paper, we analyze BHP data from field polymer injectivity test conducted in a Middle Eastern heterogeneous carbonate reservoir characterized by high-temperature and high-salinity (HTHS) conditions. The analysis involved incorporating available data to build a single-well model to simulate the injectivity test. Several generic sensitivities were tested to investigate the impact of stepwise variation in injection flow rate and polymer concentration. Polymer injection was reflected in a non-linear increase in pressure with injection, and longer transient behavior toward steady state. The results differ from water injection which have linear pressure response to rate variation, and quick stabilization of pressure after rate change. The best match of the polymer injection was obtained with complex rheology, that means the combined shear thickening at high rate near the well and moving through apparent Newtonian and shear thinning at low rate.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1178-1191 ◽  
Author(s):  
Mohammad Lotfollahi ◽  
Rouhi Farajzadeh ◽  
Mojdeh Delshad ◽  
Al-Khalil Al-Abri ◽  
Bart M. Wassing ◽  
...  

Summary Polymer flooding is one of the most widely used chemical enhanced-oil-recovery (EOR) methods because of its simplicity and low cost. To achieve high oil recoveries, large quantities of polymer solution are often injected through a small wellbore. Sometimes, the economic success of the project is only feasible when injection rate is high for high-viscosity solution. However, injection of viscous polymer solutions has been a concern for the field application of polymer flooding. The pressure increase in polymer injectors can be attributed to (1) formation of an oil bank, (2) polymer rheology (shear-thickening behavior near wellbore), and (3) plugging of the reservoir pores by insoluble polymer molecules or suspended particles in the water. In this paper, a new model to history match field injection-rate/pressure data is proposed. The pertinent equations for deep-bed filtration and external-cake buildup in radial coordinates were coupled to the viscoelastic polymer rheology to capture important mechanisms. Radial coordinates were selected to minimize the velocity/shear-rate errors caused by gridblock size in the Cartesian coordinates. The filtration theory was used and the field data history matched successfully. Systematic simulations were performed, and the impact of adsorption (retention), shear thickening, deep-bed filtration, and external-cake formation was investigated to explain the well-injectivity behavior of polymer. The simulation results indicate that the gradual increase in bottomhole pressure (BHP) during early times is attributed to the shear-thickening rheology at high velocities experienced by viscoelastic hydrolyzed polyacrylamide (HPAM) polymers around the wellbore and the permeability reduction caused by polymer adsorption and internal filtration of undissolved polymer. However, the linear impedance during external-cake growth is responsible for the sharper increase in injection pressure at the later times. One can use the proposed model to calculate the injectivity of the polymer-injection wells, understand the contribution of different phenomena to the pressure rise in the wells, locate the plugging or damage that may be caused by polymer, and accordingly design the chemical stimulation if necessary.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hamed Hematpur ◽  
Reza Abdollahi ◽  
Mohsen Safari-Beidokhti ◽  
Hamid Esfandyari

The growing demand for clean energy can be met by improving the recovery of current resources. One of the effective methods in recovering the unswept reserves is chemical flooding. Microemulsion flooding is an alternative for surfactant flooding in a chemical-enhanced oil recovery method and can entirely sweep the remaining oil in porous media. The efficiency of microemulsion flooding is guaranteed through phase behavior analysis and customization regarding the actual field conditions. Reviewing the literature, there is a lack of experience that compared the macroscopic and microscopic efficiency of microemulsion flooding, especially in low viscous oil reservoirs. In the current study, one-quarter five-spot glass micromodel was implemented for investigating the effect of different parameters on microemulsion efficiency, including surfactant types, injection rate, and micromodel pattern. Image analysis techniques were applied to represent the phase saturations throughout the microemulsion flooding tests. The results confirm the appropriate efficiency of microemulsion flooding in improving the ultimate recovery. LABS microemulsion has the highest efficiency, and the increment of the injection rate has an adverse effect on oil recovery. According to the pore structure’s tests, it seems that permeability has little impact on recovery. The results of this study can be used in enhanced oil recovery designs in low-viscosity oil fields. It shows the impact of crucial parameters in microemulsion flooding.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 319 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Cheng Fu ◽  
Ying Wang ◽  
Haoran Cheng

Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly increases the control range of injection pressure of fluid by using the annular de-pressure tool, and reasonably distributes the molecular weight of the polymer injected into the thin and poor layers through the shearing of the different-medium-injection-tools. This occurs, in order to take advantage of the shearing thinning property of polymer solution and avoid the energy loss caused by the turbulent flow of polymer solution due to excessive injection rate in different injection tools. Combining rheological property of polymer and local perturbation theory, a rheological model of polymer solution in different-medium-injection-tools is derived and the maximum injection velocity is determined. The ranges of polymer viscosity in different injection tools are mainly determined by the structures of the different injection tools. However, the value of polymer viscosity is mainly determined by the concentration of polymer solution. So, the relation between the molecular weight of polymer and the permeability of layers should be firstly determined, and then the structural parameter combination of the different-medium-injection-tool should be optimized. The results of the study are important for regulating polymer injection parameters in the oilfield which enhances the oil recovery with reduced the cost.


RSC Advances ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 8118-8130 ◽  
Author(s):  
Hongbin Yang ◽  
Wanli Kang ◽  
Hairong Wu ◽  
Yang Yu ◽  
Zhou Zhu ◽  
...  

The dispersed low-elastic microsphere system shows shear-thickening behavior because of the microstructure change and the interaction of internal forces.


SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Irfan Tai ◽  
Marie Ann Giddins ◽  
Ann Muggeridge

Summary The viability of any enhanced-oil-recovery project depends on the ability to inject the displacing fluid at an economic rate. This is typically evaluated using finite-volume numerical simulation. These simulators calculate injectivity using the Peaceman method (Peaceman 1978), which assumes that flow is Newtonian. Most polymer solutions exhibit some degree of non-Newtonian behavior resulting in a changing polymer viscosity with distance from the injection well. For shear-thinning polymer solutions, conventional simulations can overpredict injection-well bottomhole pressure (BHP) by several hundred psi, unless a computationally costly local grid refinement is used in the near-wellboreregion. We show theoretically and numerically that the Peaceman pressure-equivalent radius, based on Darcy flow, is not correct when fluids are shear thinning, and derive an analytical expression for calculating the correct radius. The expression does not depend on any particular functional relationship between polymer-solution viscosity and velocity. We test it using the relationship described by the Meter equation (Meter and Bird 1964) and the Cannella et al. (1988) correlation. Numerical tests indicate that the solution provides a significant improvement in the accuracy of BHP calculations for conventional numerical simulation, reducing or removing the need for expensive local grid refinement around the well when simulating the injection of fluids with shear-thinningnon-Newtonianrheology.


2021 ◽  
pp. 79-90
Author(s):  
Т. A. Pospelova

The article discusses ways to increase the oil recovery factor in already developed fields, special attention is paid to the methods of enhanced oil recovery. The comparative structure of oil production in Russia in the medium term is given. The experience of oil and gas companies in the application of enhanced oil recovery in the fields is analyzed and the dynamics of the growth in the use of various enhanced oil recovery in Russia is estimated. With an increase in the number of operations in the fields, the requirements for the selection of candidates inevitably increase, therefore, the work focuses on hydrodynamic modeling of physical and chemical modeling, highlights the features and disadvantages of existing simulators. The main dependences for adequate modeling during polymer flooding are given. The calculation with different concentration of polymer solution is presented, which significantly affects the water cut and further reduction of operating costs for the preparation of the produced fluid. The possibility of creating a specialized hydrodynamic simulator for low-volume chemical enhanced oil recovery is considered, since mainly simulators are applicable for chemical waterflooding and the impact is on the formation as a whole.


Sign in / Sign up

Export Citation Format

Share Document