scholarly journals Adsorption of Arsenite by Six Submerged Plants from Nansi Lake, China

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Zhibin Zhang ◽  
Yulin Sun ◽  
Cuizhen Sun ◽  
Ning Wang ◽  
Yanhao Zhang

Nansi Lake is the largest and the most important freshwater lake in north China for the South-North Water Transfer Project. Due to long-time and large-scale fish farming of history, the excess fish food and excretion usually release pentavalent arsenic, which is converted into trivalent arsenic (As (III)) in the lake sediment and released into lake water. Adsorption of arsenite using six submerged plants (Mimulicalyx rosulatus,Potamogeton maackianus,Hydrilla,Watermifoil,Pteris vittata, andPotamogeton crispus) as adsorbing materials was investigated. The experimental data obtained have been analyzed using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. According to the results, the As (III) equilibrium data agreed well with the Freundlich isotherm model. The adsorption capacity of the plants was in the following order:Potamogeton crispus>Pteris vittata>Potamogeton maackianus>Mimulicalyx rosulatus>Hydrilla>Watermifoil. The sorption system with the six submerged plants was better described by pseudo-second-order than by first-order kinetics. Moreover, the adsorption withPotamogeton crispuscould follow intraparticle diffusion (IPD) model. The initial adsorption and rate of IPD usingPotamogeton crispusandPteris vittatawere higher than those using other plants studied.

2014 ◽  
Vol 70 (1) ◽  
pp. 102-107 ◽  
Author(s):  
Caroline Trevisan Weber ◽  
Gabriela Carvalho Collazzo ◽  
Marcio Antonio Mazutti ◽  
Edson Luiz Foletto ◽  
Guilherme Luiz Dotto

Papaya (Carica papaya L.) seeds were used as adsorbent to remove toxic pharmaceutical dyes (tartrazine and amaranth) from aqueous solutions, in order to extend application range. The effects of pH, initial dye concentration, contact time and temperature were investigated. The kinetic data were evaluated by the pseudo first-order, pseudo second-order and Elovich models. The equilibrium was evaluated by the Langmuir, Freundlich and Temkin isotherm models. It was found that adsorption favored a pH of 2.5, temperature of 298 K and equilibrium was attained at 180–200 min. The adsorption kinetics followed the pseudo second-order model, and the equilibrium was well represented by the Langmuir model. The maximum adsorption capacities were 51.0 and 37.4 mg g−1 for tartrazine and amaranth, respectively. These results revealed that papaya seeds can be used as an alternative adsorbent to remove pharmaceutical dyes from aqueous solutions.


2011 ◽  
Vol 356-360 ◽  
pp. 208-216
Author(s):  
Jiang Ying Zhang ◽  
Jian Xu ◽  
Yuan Zhang ◽  
Lei Li ◽  
Ying Zhang ◽  
...  

In the present paper, the adsorption characteristics of aniline onto KSF montmorillonite from aqueous solution were investigated. Experiments were conducted at various pH values, temperatures, ionic strength and surfactant concentrations. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were adopted to investigate the rate parameters, and the pseudo-second-order equation was proved to be able to successfully predict whole process. Optimal adsorption pH was determined at 3.6. Among the selected models (linear, Langmuir, Freundlich, DR (Dubinin–Radusckevich) models), linear and DR models were found to be better fit the experimental data, which revealed the physisorption nature of the adsorption process. Meanwhile, with the increase of reaction temperatures, the adsorption capacity decreased. The results of the calculated thermodynamic parameters demonstrated that the adsorption was an exothermic, spontaneous and unfavorable process.


Author(s):  
Hutaf M. Baker

In this study a Jordanian Zeolite was modified using anionic surfactant which is sodium dodecyl sulfate (sodium dodecyl sulfate). The sorption of Pb(II) from synthetic wastewater by surfactant modified  Zeolite (SMZ) was investigated as a function of temperature. The experimental data was analysed using isotherm models namely Langmuir, Freundlich, Redlich-Peterson and Temkin and kinetic models such as the pseudo- second-order, intraparticle diffusion and the Elovich models in order to understand the mechanism of the interaction between this SMZ and the lead ions. All the isotherm models showed good correlation with the experimental results but Freundlich was the best. The calculated DH was obtained using Langmuir constant (aL), its value of 8.29kJ/mol revealed that the type of sorption is physical oneThe values of RL at all temperatures reflect the favorability of this interaction. The calculated activation energy was 21.126 kJ/mol using the pseudo-second order constant (k2), which indicates that the sorption is physisorption. The intraparticle diffusion model showed multilinearity which means multiple stages there occurred to achieve the removal of lead ions, the first linear curve is due to the boundary layer diffusion and the second linear curve isfor the intraparticle diffusion effect. The adsorption kinetics data fitted also Elovich model.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1262 ◽  
Author(s):  
Ainoa Murcia-Salvador ◽  
José A. Pellicer ◽  
María Isabel Rodríguez-López ◽  
Vicente Manuel Gómez-López ◽  
Estrella Núñez-Delicado ◽  
...  

Eggshell, a waste material from food manufacturing, can be used as a potential ecofriendly adsorbent for the elimination of textile dyes from water solutions. The adsorption process was evaluated varying factors such as initial dye load, contact time, pH, quantity of adsorbent, and temperature. The initial dye load (Direct Blue 78) was in the range of 25–300 mg/L. The kinetics of adsorption were analyzed using different models, such as pseudo-first-order, pseudo-second-order, and intraparticle diffusion model. Also, the experimental data at equilibrium were studied using Freundlich, Langmuir, and Temkin isotherms. The kinetics followed pseudo-second-order, then pseudo-first-order, and finally the model of intraparticle diffusion. The results obtained for data at equilibrium follow the order: Freundlich > Langmuir > Temkin. The adsorption equilibrium showed a maximum capacity of adsorption (qmax) of 13 mg/g at pH 5, and using 0.5 g of eggshell. Dye adsorption was enhanced with increasing temperatures. The thermodynamic study revealed the spontaneity and endothermic nature of the adsorption process. The desorption study shows that the eggshell could be reused in different adsorption/desorption cycles. A novel advanced oxidation process could degrade more than 95% of the dye. The results show that eggshell is a waste material useful to remove hazardous dyes from wastewater, which may alleviate the environmental impact of dyeing industries.


2018 ◽  
Vol 3 (4) ◽  
pp. 189 ◽  
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Muhammad Said ◽  
Risfidian Mohadi ◽  
Aldes Lesbani

Layered double hydroxides Mg/Al and Ca/Al has been synthesized by co-precipitation method with molar ratio M2+:M3+ (3:1) at pH 10. The synthesized materials were characterized by XRD and FTIR. The materials were used as adsorbent for the removal Cobalt (II) in aqueous solution. The adsorption experiments were studied through some variables adsorption such as variation of contact time, variation of temperature and variation of initial concentration. Kinetic parameters was obtained from variation of contact time. Data was analyzed by pseudo-first-order and pseudo-second-order kinetics models in linear analyses. The kinetic studies showed that the adsorption process more fitted by pseudo-second-order than pseudo-first-order based on coefficient correlation. Isotherm parameters was calculated using Langmuir and Freundlich isotherm models. The adsorption process was spontaneous and endothermic.


2017 ◽  
Vol 23 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Javad Ahmadishoar ◽  
Hajir Bahrami ◽  
Barahman Movassagh ◽  
Hosein Amirshahi ◽  
Mokhtar Arami

In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB) and Disperse Red 135 (DR) from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2068
Author(s):  
Yu-Chi Wu ◽  
Yu-Hong Wei ◽  
Ho-Shing Wu

Dowex® HCR-S ion-exchange resin was used to adsorb ectoine in a batch system under varying operation conditions in terms of contact time, temperature, pH value, initial concentration of ectoine, and type of salt. Six adsorption isotherm models (Langmuir, Freundlich, Temkin, Dubinin–Radushkevich, Sips, and Redlich–Peterson) and three kinetic models (pseudo-first-order, pseudo-second-order, and intraparticle diffusion) were used to investigate the ectoine adsorption mechanism of ion-exchange resin. According to the experimental results, the mechanism of ectoine adsorption using an ion exchanger includes the ion-exchange reaction and physisorption. Both the Langmuir and Freundlich models were found to have a high fitting. For the kinetic analysis, the pseudo-second-order and intraparticle diffusion models were suitable to describe the ectoine adsorption. Dowex® HCR-S resin has an average saturated adsorption capacity of 0.57 g/g and 93.6% of ectoine adsorption at 25~65 °C, with an initial concentration of 125 g/L. By changing the pH of the environment using NaOH solution, the adsorbed ectoine on the ion-exchange resin can be desorbed to 87.7%.


2021 ◽  
Vol 348 ◽  
pp. 01016
Author(s):  
Rajaa Bassam ◽  
Marouane El Alouani ◽  
Nabila Jarmouni ◽  
Jabrane Maissara ◽  
Mohammed El Mahi Chbihi ◽  
...  

Heavy metals are the most dangerous inorganic pollutants Due to their bioaccumulation and their nonbiodegradability, for this, several studies have focused on the recovery of these metals from water using different techniques. In this context, our study consists of evaluating an efficient and eco-friendly pathway of competitive recovery of heavy metals (Cd, Cr and As) from aqueous solutions by adsorption using raw rock. This adsorbent was characterized before and after the adsorption process by several techniques. The multi-metals adsorption process in the batch mode was undertaken to evaluate the effect of adsorbent mass, contact time, pH, Temperature, and initial heavy metals concentration. The kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. According to the modeling of the experimental results, the adsorption kinetics of heavy metals were adapted to the pseudo-second-order model. The adsorption isotherms were evaluated by the Langmuir and Freundlich isotherm models. The experimental isotherm data of heavy metals were better fitted with the Langmuir model rather than Freundlich isotherm models. The maximum experimental adsorption capacities (Qmax) predicted by the Langmuir model are 15.23 mg/g for Cd (II), 17.54 mg/g for Cr (VI) and 16.36 mg/g for As (III). The values of thermodynamic parameters revealed that the heavy metals adsorption was exothermic, favorable, and spontaneous in nature. The desorption process of heavy metals showed that this raw rock had excellent recycling capacity. Based on the results, these untreated clays can be used as inexpensive and environmentally friendly adsorbents to treat water contaminated by heavy metals.


2021 ◽  
Author(s):  
khaled Mostafa ◽  
H. Ameen ◽  
A. Ebessy ◽  
A. El-Sanabary

Abstract Our recently tailored and fully characterized poly (AN)-starch nanoparticle graft copolymer having 60.1 G.Y. % was used as a starting substrate for copper ions removal from waste water effluent after chemical modification with hydroxyl amine via oximation reaction. This was done to change the abundant nitrile groups in the above copolymer into amidoxime one and the resultant poly (amidoxime) resin was used as adsorbent for copper ions. The resin was characterized qualitatively via rapid vanadium ion test and instrumentally by FT-IR spectra and SEM morphological analysis to confirm the presence of amidoxime groups. The adsorption capacity of the resin was done using the batch technique, whereas the residual copper ions content in the filtrate before and after adsorption was measured using atomic adsorption spectrometry. It was found that the maximum adsorption capacity of poly (amidoxime) resin was 115.2 mg/g at pH 7, 400ppm copper ions concentration and 0.25 g adsorbent at room temperature. The adsorption, kinetics and isothermal study of the process is scrutinized using different variables, such as pH, contact time, copper ion concentration and adsorbent dosage. Different kinetics models comprising the pseudo-first-order and pseudo-second-order have been applied to the experimental data to envisage the adsorption kinetics. It was found from kinetic study that pseudo-second-order rate equation was better than pseudo-first-order supporting the formation of chemisorption process. While, in case of isothermal study, the examination of calculated correlation coefficient (R2) values showed that the Langmuir model provide the best fit to experimental data than Freundlich one.


Sign in / Sign up

Export Citation Format

Share Document