scholarly journals Removal of Lead Ions from Waste Water Using Modified Jordanian Zeolite

Author(s):  
Hutaf M. Baker

In this study a Jordanian Zeolite was modified using anionic surfactant which is sodium dodecyl sulfate (sodium dodecyl sulfate). The sorption of Pb(II) from synthetic wastewater by surfactant modified  Zeolite (SMZ) was investigated as a function of temperature. The experimental data was analysed using isotherm models namely Langmuir, Freundlich, Redlich-Peterson and Temkin and kinetic models such as the pseudo- second-order, intraparticle diffusion and the Elovich models in order to understand the mechanism of the interaction between this SMZ and the lead ions. All the isotherm models showed good correlation with the experimental results but Freundlich was the best. The calculated DH was obtained using Langmuir constant (aL), its value of 8.29kJ/mol revealed that the type of sorption is physical oneThe values of RL at all temperatures reflect the favorability of this interaction. The calculated activation energy was 21.126 kJ/mol using the pseudo-second order constant (k2), which indicates that the sorption is physisorption. The intraparticle diffusion model showed multilinearity which means multiple stages there occurred to achieve the removal of lead ions, the first linear curve is due to the boundary layer diffusion and the second linear curve isfor the intraparticle diffusion effect. The adsorption kinetics data fitted also Elovich model.

2020 ◽  
pp. 13-22

Hexavalent chromium (Cr(VI)) has the characteristic of forming anionic species, which are very toxic, very soluble in water and difficult to be removed. In this study, dichromate removal from aqueous solutions by chitosan and chitosan modified by sodium dodecyl sulfate (SDS) was addressed. The effect of various experimental parameters, such as pH (1-9), initial concentration (10-100 mg L-1), adsorbent dose (0.005-0.350 g) and contact time (5-60 min) was investigated. All experiments were conducted in batch mode at room temperature (~21 oC). The obtained equilibrium adsorption isotherms were analyzed using the Langmuir and Freundlich models. Furthermore, the kinetics of dichromate removal was analyzed by pseudo-first order, pseudo-second order and the Elovich models. Optimum conditions for obtaining high removal (~97%) within a relatively short time (60 min) are: 5.0 pH, 0.100 g SDS-chitosan dosage and an initial Cr2O72- concentration of 10 mg L-1. The dichromate adsorption capacity of chitosan is 8.3 mg L-1, while that of SDS-chitosan is 9.7 mg L-1. In addition, the adsorption of dichromate by chitosan and SDS-chitosan is well-fitted by the Langmuir and Freundlich models while the adsorption kinetics is best fitted by the pseudo-second-order kinetic model.


2017 ◽  
Vol 23 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Javad Ahmadishoar ◽  
Hajir Bahrami ◽  
Barahman Movassagh ◽  
Hosein Amirshahi ◽  
Mokhtar Arami

In this study modified montmorillonite was used as an adsorbent for the removal of two selected disperse dyes i.e., Disperse Blue 56 (DB) and Disperse Red 135 (DR) from dye dispersions. The adsorption equilibrium data of dyes adsorption were investigated by using Nernst, Freundlich and Langmuir isotherm models. The adsorption kinetics was analyzed by using different models including pseudo-first-order, pseudo-second-order, Elovich and Intraparticle diffusion model. The Freundlich isotherm was found to be the most appropriate model for describing the sorption of the dyes on modified nanoclay. The best fit to the experimental results was obtained by using the pseudo-second-order kinetic equation, which satisfactorily described the process of dye adsorption. Although different kinetic models may control the rate of the adsorption process, the results indicated that the main rate limiting step was the intraparticle diffusion. The results showed that the proposed modified montmorillonite could be used as an effective adsorbent for the removal of disperse dyes even from highly concentrated dispersions.


2018 ◽  
Vol 20 (2) ◽  
pp. 408-416

Mesophilic biomass and thermophilic biomass samples were isolated and used to remove Dorasyn Red dye from aqueous solutions. The biosorption kinetics of dye uptake by four different types of biomass at three temperatures (20, 30, and 40 °C) were investigated using pseudo-first order kinetics, pseudo-second order kinetics, intraparticle diffusion, Elovich, and Bangham models. The pseudo-second-order kinetics model and the first stage of the intraparticle diffusion model were effective in describing the experimental kinetics data. The biosorption results showed that the mesophilic biomass samples could be useful for removing dye under acidic conditions.


2020 ◽  
Vol 10 (14) ◽  
pp. 4745
Author(s):  
Xiaoyu Du ◽  
Chihiro Kishima ◽  
Haixin Zhang ◽  
Naoto Miyamoto ◽  
Naoki Kano

In this study, chitosan beads modified with sodium dodecyl sulfate (SDS) were successfully synthesized and employed for the removal of chromium(VI) (Cr(VI)). The adsorption performance of the adsorbent (SDS-chitosan beads) was examined by batch experiments. The partition coefficient (PC) as well as the adsorption capacity were evaluated to assess the true performance of the adsorbent in this work. The adsorbent (SDS-chitosan beads) showed a maximum Cr(VI) adsorption capacity of 3.23 mg·g−1 and PC of 9.5 mg·g−1·mM−1 for Cr(VI). The prepared adsorbent was characterized by different techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FT-IR). We used inductively coupled plasma mass spectrometry (ICP-MS) for the determination of Cr(VI) in solution. The experimental data could be well-fitted by pseudo-second-order kinetic and Langmuir isotherm models. The thermodynamic studies indicated that the adsorption process was favorable under the higher temperature condition. The SDS-modified chitosan beads synthesized in this work represent a promising adsorbent for removing Cr(VI).


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1880
Author(s):  
José A. Pellicer ◽  
María Isabel Rodríguez-López ◽  
María Isabel Fortea ◽  
Vicente M. Gómez-López ◽  
David Auñón ◽  
...  

Two cyclodextrins (CDs), γ– and hydroxypropyl (HP)–γ–CDs were used to synthesize new adsorbents by using epichlorohydrin (EPI) as cross-linking agent in order to remove Direct Red 83:1 (DR) from water. Both polymers were characterized in terms of Fourier spectroscopy, nuclear magnetic resonance, particle size distribution and thermogravimetric analysis. Experimental data for both polymers were well fitted to the pseudo-second order and intraparticle diffusion model, indicating that in the adsorption both chemical and physical interactions are essential in the removal of DR. Three different isotherm models were analyzed, concluding that γ–CDs–EPI followed the Temkin isotherm and HP–γ–CDs-EPI the Freundlich isotherm, these results suggested that the adsorption was happening onto heterogeneous surfaces. The results of the Gibbs free energy showed that the adsorption was spontaneous at room temperature. In order to eliminate the remaining dye after the polymer treatment, and advanced oxidation process (AOP) was considered, achieving more than 90% of removal combining both mechanisms.


2013 ◽  
Vol 11 (1) ◽  
pp. 501-509
Author(s):  
Xueyong Zhou ◽  
Huifen Liu ◽  
Xianzhi Lu ◽  
Lili Shi ◽  
Jianchao Hao

Abstract Genetically modified crops, which produce insecticidal toxins from Bacillus thuringiensis (Bt), release the toxins into soils. Although the phenomena of persistence and degradation of Bt toxins have been documented, the effect of heavy metals on the fate of these toxins in soil has not yet been elucidated. The effect of Pb(II) on the adsorption behaviors of Bt toxin in brown and red soil was investigated. With the increase of Pb(II) concentration, the adsorption of Bt toxin in brown and red soil increased. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models gave better fitting to the experimental equilibrium data. Values of KL, KF and n increased but RL decreased with the increase of Pb(II) concentration, showing that the Pb(II) promoted the adsorption of Bt toxin in soils. The mean free energy of adsorption (E) ranged from 10.43 to 16.44 kJ mol−1 may correspond to a chemical ion-exchange mechanism. Three kinds of kinetic models, the pseudo-first-order, pseudo-second-order and intraparticle diffusion model, were used to test the experimental data. The results showed that the adsorption of Bt toxin by brown and red soil followed the pseudo-second-order kinetic model. The addition of Pb(II) during the adsorption led to a decrease of the desorption of Bt toxin from soils, indicating that the residual risk of Bt toxin may become larger if soil is polluted by lead.


2017 ◽  
Vol 19 (3) ◽  
pp. 120-129 ◽  
Author(s):  
Wojciech Konicki ◽  
Małgorzata Aleksandrzak ◽  
Ewa Mijowska

Abstract In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.


2010 ◽  
Vol 160-162 ◽  
pp. 163-170
Author(s):  
Hong Zheng ◽  
Yang Wang ◽  
Peng Liang ◽  
Hong Bin Qi

The ability of Cr-bentonite prepared using synthetic wastewater containing chromium was investigated for adsorptive removal of 4-aminophenol and 4-chlorophenol from aqueous solution in a batch system at 25 °C. The physic-chemical parameters including pH value of solution and contact time were studied. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of sorption. The equilibrium sorption data for 4-aminophenol and 4-chlorophenol were well fitted to Langmuir adsorption isotherm and the monolayer sorption capacity was found to be 26.53 and 23.81 mg/g at 25 °C, respectively. The sorption energy calculated from Dubinin-Redushkevich (D-R) isotherm are 8.31 and 8.20 kJ/mol for the uptake of 4-aminophenol and 4-chlorophenol respectively which indicates that both the sorption processes are chemical in nature. The kinetic data were analyzed using pseudo-first order, pseudo-second order kinetic equation and intraparticle diffusion model. The experimental data fit very well the pseudo-second order kinetic model. Intraparticle diffusion affects 4-aminophenol and 4-chlorophenol uptake. Sorption studies carried out using industrial wastewater samples containing phenolic compounds show that there is significant potential for Cr-bentonite as an adsorbent material for phenollic compounds removal from aqueous solutions.


Author(s):  
F. B. Okanlawon ◽  
O. A. Okon- Akan ◽  
O. A. Adegoke ◽  
O. A. Olatunji

This study was carried out using Alfisol as an adsorbent to adsorb Cadmium and Glyphosate both of which are common inorganic and organic contaminants. The soil samples were air-dried and allowed to pass through 2mm sieve before use while its analysis was done following the standard procedures. The kinetic data were tested with pseudo-first-order and pseudo-second-order models, and it was concluded that both adsorbates adsorption followed the pseudo-second-order kinetics, while the nature and the mechanism of adsorption processes were studied by using an intraparticle diffusion model. A complete linear plot of intraparticle diffusion was obtained for glyphosate which suggests that intraparticle diffusion was the rate-controlling step in its adsorption but the opposite is the case for cadmium adsorption. The peak removal of cadmium occurred after 50 minutes with equilibrium attained over 250 minutes while peak glyphosate removal was achieved after 30 minutes. It can be concluded that Alfisol can be effectively used for the adsorption of both Cadmium and Glyphosate thus showcasing a potential environmental remediation process.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Zhibin Zhang ◽  
Yulin Sun ◽  
Cuizhen Sun ◽  
Ning Wang ◽  
Yanhao Zhang

Nansi Lake is the largest and the most important freshwater lake in north China for the South-North Water Transfer Project. Due to long-time and large-scale fish farming of history, the excess fish food and excretion usually release pentavalent arsenic, which is converted into trivalent arsenic (As (III)) in the lake sediment and released into lake water. Adsorption of arsenite using six submerged plants (Mimulicalyx rosulatus,Potamogeton maackianus,Hydrilla,Watermifoil,Pteris vittata, andPotamogeton crispus) as adsorbing materials was investigated. The experimental data obtained have been analyzed using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. According to the results, the As (III) equilibrium data agreed well with the Freundlich isotherm model. The adsorption capacity of the plants was in the following order:Potamogeton crispus>Pteris vittata>Potamogeton maackianus>Mimulicalyx rosulatus>Hydrilla>Watermifoil. The sorption system with the six submerged plants was better described by pseudo-second-order than by first-order kinetics. Moreover, the adsorption withPotamogeton crispuscould follow intraparticle diffusion (IPD) model. The initial adsorption and rate of IPD usingPotamogeton crispusandPteris vittatawere higher than those using other plants studied.


Sign in / Sign up

Export Citation Format

Share Document