scholarly journals Novel Design of High-Gain Planar Dipole-Array Antenna for RFID 2.45 GHz

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Danpeng Xie ◽  
Xueguan Liu ◽  
Huiping Guo ◽  
Xinmi Yang

This paper presents a novel high-gain planar dipole-array antenna for 2.45 GHz which consists of four planar dipole elements placed in two parallel lines. Phase retardation of each element is set by feeding network to form controllable radiation direction. The radiation pattern of the array is discussed according to Arrays Theorem. The measured −10 dB band is from 2.3 GHz to 2.57 GHz, and peak gain in this band is 7.5 dBi. The gain can even reach 10.5 dBi after installing additional ground. The proposed antenna has advantages of high gain, controllable direction, and planarity which are suitable for 2.45 GHz RFID base station.

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Hongyu Shi ◽  
Jianxing Li ◽  
Shitao Zhu ◽  
Anxue Zhang ◽  
Zhuo Xu

In this paper, we proposed a radiation pattern reconfigurable waveguide slot array antenna using liquid crystal (LC). Together with the waveguide slot, the designed complementary electric-field-coupled resonator functions like a switch controlled by the dielectric constant of the LC, which can control the antenna element to radiate or not. Thus, the array factor and radiation pattern can be manipulated. The proposed antenna was simulated, fabricated, and measured. Its radiation direction can be reconfigured to 46° or 0° at about 15 GHz.


2020 ◽  
Vol 10 (7) ◽  
pp. 2429 ◽  
Author(s):  
Li Hui Dai ◽  
Chong Tan ◽  
Yong Jin Zhou

Stable radiation pattern, high gain, and miniaturization are necessary for the ultra-wideband antennas in the 2G/3G/4G/5G base station applications. Here, an ultrawideband and miniaturized spoof plasmonic antipodal Vivaldi antenna (AVA) is proposed, which is composed of the AVA and the loaded periodic grooves. The designed operating frequency band is from 1.8 GHz to 6 GHz, and the average gain is 7.24 dBi. Furthermore, the measured results show that the radiation patterns of the plasmonic AVA are stable. The measured results are in good agreement with the simulation results.


2016 ◽  
Vol 2016 ◽  
pp. 1-15
Author(s):  
Yun Hao ◽  
Haomeng Tong ◽  
Xihong Ye

A circularly polarized (CP) Microstrip Yagi array antenna (MSYA) is designed in order to achieve high front-to-back ratioR(F/B)and high gain over wide range in the forward radiation space. A Wilkinson power divider owning two output ways with the same magnitude and different phase is used to feed the antenna. Parametric studies are carried out to investigate the effects of some key geometrical sizes on the antenna’s performance. A prototype of the antenna is fabricated, and good agreement between the measured results and the numerical simulations is observed. The overlap bandwidth of VSWR ≤ 1.5 and AR ≤ 3 dB is about 11%. The steering angle (α) between the peak gain direction and the broadside can achieve 35°,R(F/B)reaches 19 dB, and the gain at the front point (G0) is only 4.3 dB lower than the maximum gain (Gm). The antenna has a wide beamwidth CP radiation pattern over wide spatial range including 0° ≤θ≤ 90° in vertical plane and −35° ≤φ≤ 55° in horizontal plane.


2021 ◽  
Author(s):  
Maryam Shadi ◽  
Zahra Atlasbaf

Abstract Synthesizing antenna arrays for fifth-generation communication technology is the most significant issue in the electromagnetic industry and academia. This paper focused on a comprehensive algorithm to design an antenna array used as a 5G base station antenna. The proposed algorithm's goal has an array antenna with high gain, continuous wide scan angle without grating lobe, compact size, minimum cost, and simplicity of construction, particularly in the array feeding network's system. For this purpose, several factors, such as subarray topology, complex weighting function, the minimum number of RF elements, and the optimum number of microstrip layers will be intended. The desired topology is specified with the grating lobe's minimum level by comparing the array factor of different subarray combinations. We consider some limitations in our algorithm that improve the specification than before research and reduce the runtime algorithm. Moreover, the number of phase shifters is decreased to more than 53%, substantially improved than previous works. The GAPSO technique is then used to determine the excitation coefficients' optimal value to control SLL and beam scanning. Amplitude accuracy and phase are considered 0.1 and 1 degree, respectively, to avoid tolerance construction. The proposed method is also applied to design a linear array antenna using a 5G base station antenna in 28 GH. This aperiodic linear array's electromagnetic parameter consists of HPBW of 2.8◦, a gain of 20 dB, scanning up to ±50◦ in one direction, and SLL is below -15 dB.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 494
Author(s):  
M Vasujadevi ◽  
B T P Madhav ◽  
A Shiva Skandan ◽  
P Rajeswari ◽  
K Arjun Rao ◽  
...  

This article presents design and analysis of maple leaf shaped array antenna for high gain applications. The proposed antenna is characterized and analyzed using ANSYS EM desktop 17. This antenna works at 2.17-2.54(S band),5.3-5.64, 6.91-7.80(C Band), 8.76-9.15(X band), 12.49-12.75, 14.78-16.65(Ku band). The bands of the proposed antenna has its applications at LTE 2.3 GHz, ISM 2.4 GHz, WLAN, ISM, Bluetooth at S-band and upper WLAN at C-band, Military applications and air traffic control at X-band. This single antenna dimensioned 21x18x1.6 mm³ is later arrayed in 1x4. This antenna has peak gain at 7.8dB and the average gain of 4.2dB. The proposed 1x4 array antenna is characterized and obtained return loss, gain, E field, current distribution and far field radiation patterns.


2018 ◽  
Vol 218 ◽  
pp. 03011
Author(s):  
Nurlaila Safitri ◽  
Rina Pudji Astuti ◽  
Bambang Setia Nugroho

It will be diffcult to use either omnidirectional or fixed beam antenna due to the high propagation losses caused by atmospheric absorption at mmWave for 5G mobile communication. Several studies have been conducted recently using butler matrix which is part of switchable antenna with some advantages such as simple, minimal cost, low loss, etc. Previous studies also have designed vivaldi array antenna at 28 GHz which provides a fix beam directional radiation pattern with narrow beam that requires real phase setting. However, there has been no research using vivaldi antenna with butler matrix, whereas it has some advantages such as wide bandwidth, high gain, high directivity, etc. This paper proposed 4x4 butler matrix integrated with vivaldi antenna by using phase shift of 45 . The design is developed on a single layer of Rogers RT5880 with dielectric constant 2.2 and thickness 0.254 mm. Best results of simulation were picked for overall system at 28 GHz, and the results of antenna as follows: the return loss was below -10 dB, the realized antennas gain was 10.2 dB with unidirectional radiation pattern and bandwidth antenna of 6 GHz that covers from 25 GHz to 31 GHz. The butler matrix average phase di erent between output port are -44.106°, 137.38°, -137.66°, 43.95° with phase err°r °f 0.894°, 2.38°, 2.66°, 1.06°. Antenna array that has been given di erent phase by butler matrix is able to shift radiation pattern on the input port successively with range of beam that can be achieved equal to 185o.


2017 ◽  
Vol 10 (4) ◽  
pp. 453-459
Author(s):  
Haixiong Li ◽  
Bozhang Lan ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a high gain broadband low profile microstrip antenna with the dual-layered substrate and four parasitic metal elements is presented. The proposed microstrip antenna is mainly composed of four parts: four circular parasitic metal patches with dual arced breaches, a rectangular metal patch sandwiched between substrates, a square ground plane, and two-square substrates. The circular parasitic elements are the main radiation structure and determine the characteristics of the proposed antenna are closely related to the parasitic elements. The proposed antenna has been fabricated for experimental measurement. The reflection coefficient, radiation pattern, radiation efficiency, and gain have been studied in detail. The simulated and measured impedance bandwidth is 27.0% (3.30–4.33 GHz), the maximum realized peak gain reaches up to 6.52 dBi at the frequency of 3.65 GHz. The radiation pattern has a single peak which is perpendicular to the surface of the substrate. The proposed antenna is suitable to be applied in the 5G mobile or WiMAX wireless communication. Dual antenna with a pair of parasitic elements has been investigated numerically to explain the principle of the proposed antenna.


Sign in / Sign up

Export Citation Format

Share Document