High gain low profile wideband dual-layered substrate microstrip antenna based on multiple parasitic elements

2017 ◽  
Vol 10 (4) ◽  
pp. 453-459
Author(s):  
Haixiong Li ◽  
Bozhang Lan ◽  
Jun Ding ◽  
Chenjiang Guo

In this paper, a high gain broadband low profile microstrip antenna with the dual-layered substrate and four parasitic metal elements is presented. The proposed microstrip antenna is mainly composed of four parts: four circular parasitic metal patches with dual arced breaches, a rectangular metal patch sandwiched between substrates, a square ground plane, and two-square substrates. The circular parasitic elements are the main radiation structure and determine the characteristics of the proposed antenna are closely related to the parasitic elements. The proposed antenna has been fabricated for experimental measurement. The reflection coefficient, radiation pattern, radiation efficiency, and gain have been studied in detail. The simulated and measured impedance bandwidth is 27.0% (3.30–4.33 GHz), the maximum realized peak gain reaches up to 6.52 dBi at the frequency of 3.65 GHz. The radiation pattern has a single peak which is perpendicular to the surface of the substrate. The proposed antenna is suitable to be applied in the 5G mobile or WiMAX wireless communication. Dual antenna with a pair of parasitic elements has been investigated numerically to explain the principle of the proposed antenna.

2021 ◽  
Vol 34 (3) ◽  
pp. 435-444
Author(s):  
Biplab Bag ◽  
Sushanta Biswas ◽  
Partha Sarkar

In this paper dual wideband high gain circular shaped microstrip antenna with modified ground plane is presented for wireless communication systems. The overall dimension of the proposed antenna is 50 x 40 x 1.6 mm3. The radiating element consists of circular shaped patch which is excited by microstrip feed-line printed on FR4 epoxy substrate. The ground plane is on the other side of the substrate having a rectangular ring shape to enhance the peak gain of the antenna. The proposed antenna exhibits two wide fractional bandwidths (based on ? -10 dB) of 61.1% (ranging from 2.0 to 3.8 GHz, centred at 2.88 GHz) and 53.37% (ranging from 5.48 to 9.6 GHz, centred at 7.44 GHz). The measured peak gain achieved is 8.25 dBi at 8.76 GHz. The measured impedance bandwidth and gain suffice all the commercial bands of wireless systems such as 4G LTE band-40, Bluetooth, Wi-Fi, WLAN, WiMAX, C-band, and Xband. The measured results are experimentally tested and verified with simulated results. A reasonable agreement is found between them.


2016 ◽  
Vol 9 (5) ◽  
pp. 1179-1184 ◽  
Author(s):  
Kalyan Mondal ◽  
Partha Pratim Sarkar

In this work, microstrip antenna with W- and V-shaped radiating patches have been proposed. Here square- and circular-shaped modified ground planes have been designed by poly tetra fluoro ethylene (PTFE) substrate with dielectric constant 2.4. Broadband with high gain is obtained by optimum selection of radiating patch with modified ground plane. The ground planes are modified by loading a U-shaped slot. The simulated and measured results are compared. Considering −10 dB impedance bandwidth maximum frequency band of 6.97 GHz (3.04–10.01 GHz) with percentage bandwidth of 106.8% is achieved. The proposed antenna exhibits maximum peak gain of 5.1 dBi. The simulation and measurement have been done by Ansoft designer software and vector network analyzer.


Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Truong Khang Nguyen ◽  
Ikmo Park

This paper presents the design of a planar, low-profile, high-gain, substrate-integrated Fabry-Pérot cavity antenna forK-band applications. The antenna consists of a frequency selective surface (FSS) and a planar feeding structure, which are both lithographically patterned on a high-permittivity substrate. The FSS is made of a circular hole array that acts as a partially reflecting mirror. The planar feeding structure is a wideband leaky-wave slit dipole fed by a coplanar waveguide whose ground plane acts as a perfect reflective mirror. The measured results show that the proposed antenna has an impedance bandwidth of more than 8% (VSWR ≤ 2), a maximum gain of 13.1 dBi, and a 3 dB gain bandwidth of approximately 1.3% at a resonance frequency of around 21.6 GHz. The proposed antenna features low-profile, easy integration into circuit boards, mechanical robustness, and excellent cost-effective mass production suitability.


Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 41-51
Author(s):  
Alka Verma ◽  
Anil Kumar Singh ◽  
Neelam Srivastava ◽  
Binod Kumar Kanaujia

AbstractIn this article, a new structure comprising of a novel compact slot loaded polarization dependent Electromagnetic Band Gap structure (SLPDEBG), which enhances the performance of circularly polarized rotated square patch antenna by placing SLPDEBG unit cells around it, has been designed. The proposed antenna, having dimensions 0.640 λo x 0.640 λ x 0.0128 λo (λo stands for the free space wavelength at 2.39 GHz), shows that the measured impedance bandwidth and AR bandwidth is 120 MHz and 50 MHz, respectively, with a peak gain of 3.52 dB. Some prominent features of the proposed structure are: front to back ratio of 64, 3 db, beamwidth of 92° at xz-plane and 74° at yz-plane. This prototype antenna finds its application in wireless communication of ISM band. Good performance of the proposed antenna is verified by the close agreement between the simulated and measured results.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1279
Author(s):  
Lee ◽  
Kim ◽  
Pyo

This paper presents a novel low-profile microstrip antenna with an omnidirectional radiation pattern for an artillery-launched observation round. The proposed antenna consists of one centered hexagonal patch for a feeding network and six periodic arrays of a trapezoid patch for a radiator. The trapezoid patch is equal to a half-sized hexagonal patch based on geometrical symmetry. A gap-coupled one-hexagonal patch and six trapezoid patches are supported on a nonfundamental TM02 mode for vertically polarized omnidirectional radiation patterns. In addition, a meshed ground structure for the proposed antenna is employed to improve the impedance bandwidth. The thin metal wires that are formed by the meshed ground structure yield six trapezoid slot arrays for the feeding network and three triangular slot arrays for the radiator on the ground plane. To verify the feasibility of the meshed ground structure, the mesh width, denoted by w, was investigated theoretically and optimized carefully to enlarge the impedance bandwidth of the proposed antenna. Finally, the proposed antenna, with a mesh width of 0.2 mm, successfully demonstrated excellent monopolar radiation at a resonant frequency of 5.84 GHz, a realized gain of 5.27 dBi, and an impedance bandwidth of 452 MHz from 5.583 GHz to 6.035 GHz with respect to 7.78% at a center frequency of 5.809 GHz.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Rongling Jian ◽  
Yueyun Chen ◽  
Taohua Chen

In this paper, a novel wideband circularly polarized (CP) millimeter wave (mmWave) microstrip antenna is presented. The proposed antenna consists of a central patch and a microstrip line radiator. The CP radiation is achieved by loading a rectangular slot on the ground plane. To improve the 3-dB axial ratio bandwidth (ARBW), two symmetric parasitic rectangular patches paralleled to a central patch and a slit positioned to the right of the central patch are loaded. To verify this design, the proposed antenna is fabricated with a small antenna of 2.88 × 3.32 × 0.508 mm3. The measured impedance bandwidth (IMBW) for S11<−10 dB of the proposed antenna is 35.97% (22.8 to 33.8 GHz). Meanwhile, the simulation result shows that the 3-dB ARBW is 15.19% (28.77 to 33.5 GHz) within impedance bandwidth, and the peak gain is from 5.08 to 5.22 dBic within 3-dB ARBW. The proposed antenna is suitable for CP applications in the Ka-band.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Jaehyuk Lim ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
...  

A compact triple-band monopole antenna consisting of double rectangular rings and vertical slots cut into the ground is proposed for WLAN and WiMAX operations. The antenna has a compact size of 27.1 × 38.8 × 1.6 mm3, with simulated and measured impedance bandwidths of 2.37~2.81, 3.21~3.82, and 4.61~6.34 GHz with a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern and stable gain levels in the triple bands. The characteristics of the proposed antenna have been investigated using the numerical simulations and experiments.


In this paper, a microstrip antenna is presented. It has an H-shaped patch which uses meandered slots an H-shaped DGS beneath the microstrip line to support multiband operation with enhanced bandwidth. The simulated and measured results are plotted to see the performance of the antenna in terms of S11 parameter. The proposed designed resonates at 3.56, 8.04 and 10.57 GHz with a peak gain of 8.39 dB with considerable impedance bandwidth and return loss values at the desired bands. The radiation pattern plots show the conformability with the application it is designed for. The planar structure with a water-resistant substrate makes it suitable for weather radar and other 5G applications.


2019 ◽  
Vol 9 (9) ◽  
pp. 1896 ◽  
Author(s):  
Kyo-Seung Keum ◽  
Young-Mi Park ◽  
Jae-Hoon Choi

A low-profile wideband monocone antenna with bent shorting strips, and parasitic and circular sleeves is proposed. By loading the bent shorting strips, parasitic sleeves, and circular sleeves, miniaturization of the antenna is achieved. Along with bent shorting strips from the monocone hat to the ground plane, parasitic sleeves, and circular sleeves are mounted to enhance the impedance bandwidth. From the experimental results, the –10 dB reflection coefficient bandwidth of the proposed antenna ranges from 810 MHz to 5340 MHz. In addition to the wide bandwidth characteristics, the proposed antenna has highly desirable omnidirectional radiation properties for wireless communication systems.


Sign in / Sign up

Export Citation Format

Share Document