scholarly journals Neural Structures within Human Meniscofemoral Ligaments: A Cadaveric Study

ISRN Anatomy ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Chinmay M. Gupte ◽  
Daniel A. Shaerf ◽  
Ann Sandison ◽  
Anthony M. J. Bull ◽  
Andrew A. Amis

Aim. To investigate the existence of neural structures within the meniscofemoral ligaments (MFLs) of the human knee. Methods. The MFLs from 8 human cadaveric knees were harvested. 5 μm sections were H&E-stained and examined under light microscopy. The harvested ligaments were then stained using an S100 monoclonal antibody utilising the ABC technique to detect neural components. Further examination was performed on 60–80 nm sections under electron microscopy. Results. Of the 8 knees, 6 were suitable for examination. From these both MFLs existed in 3, only anterior MFLs were present in 2, and an isolated posterior MFL existed in 1. Out of the 9 MFLs, 4 demonstrated neural structures on light and electron microscopy and this was confirmed with S100 staining. The ultrastructure of these neural components was morphologically similar to mechanoreceptors. Conclusion. Neural structures are present in MFLs near to their meniscal attachments. It is likely that the meniscofemoral ligaments contribute not only as passive secondary restraints to posterior draw but more importantly to proprioception and may therefore play an active role in providing a neurosensory feedback loop. This may be particularly important when the primary restraint has reduced function as in the posterior cruciate ligament—deficient human knee.

Author(s):  
D. E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
Joann Stevenson ◽  
S. Black

The response of spermatogonial cells to X-irradiation is well documented. It has been shown that there is a radiation resistent stem cell (As) which, after irradiation, replenishes the seminiferous epithelium. Most investigations in this area have dealt with radiation dosages of 100R or more. This study was undertaken to observe cellular responses at doses less than 100R of X-irradiation utilizing a system in which the tissue can be used for light and electron microscopy.Brown B6D2F1 mice aged 16 weeks were exposed to X-irradiation (225KeV; 15mA; filter 0.35 Cu; 50-60 R/min). Four mice were irradiated at each dose level between 1 and 100 rads. Testes were removed 3 days post-irradiation, fixed, and embedded. Sections were cut at 2 microns for light microscopy. After staining, surviving spermatogonia were identified and counted in tubule cross sections. The surviving fraction of spermatogonia compared to control, S/S0, was plotted against dose to give the curve shown in Fig. 1.


Author(s):  
Conly L. Rieder

The behavior of many cellular components, and their dynamic interactions, can be characterized in the living cell with considerable spatial and temporal resolution by video-enhanced light microscopy (video-LM). Indeed, under the appropriate conditions video-LM can be used to determine the real-time behavior of organelles ≤ 25-nm in diameter (e.g., individual microtubules—see). However, when pushed to its limit the structures and components observed within the cell by video-LM cannot be resolved nor necessarily even identified, only detected. Positive identification and a quantitative analysis often requires the corresponding electron microcopy (EM).


1997 ◽  
Vol 10 (01) ◽  
pp. 6-11 ◽  
Author(s):  
R. F. Rosenbusch ◽  
L. C. Booth ◽  
L. A. Dahlgren

SummaryEquine tendon fibroblasts were isolated from explants of superficial digital flexor tendon, subcultured and maintained in monolayers. The cells were characterized by light microscopy, electron microscopy and radiolabel studies for proteoglycan production. Two predominant cell morphologies were identified. The cells dedifferentiated toward a more spindle shape with repeated subcultures. Equine tendon fibroblasts were successfully cryopreserved and subsequently subcultured. The ability to produce proteoglycan was preserved.The isolated cells were identified as fibroblasts, based on their characteristic shape by light microscopy and ultrastructure and the active production of extracellular matrix proteins. Abundant rough endoplasmic reticulum and the production of extracellular matrix products demonstrated active protein production and export. Proteoglycans were measurable via liquid scintillation counting in both the cell-associated fraction and free in the supernatant. This model is currently being utilized to study the effects of polysulfated glycosaminoglycan on tendon healing. Future uses include studying the effects of other pharmaceuticals, such as hyaluronic acid, on tendon healing.A model was developed for in vitro investigations into tendon healing. Fibroblasts were isolated from equine superficial digital flexor tendons and maintained in monolayer culture. The tenocytes were characterized via light and electron microscopy. Proteoglycan production was measured, using radio-label techniques. The fibroblasts were cryopreserved and subsequently subcultured. The cells maintained their capacity for proteoglycan production, following repeated subculturing and cryopreservation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dorothea Pinotsi ◽  
Simona Rodighiero ◽  
Silvia Campioni ◽  
Gabor Csucs

Abstract A number of new Correlative Light and Electron Microscopy approaches have been developed over the past years, offering the opportunity to combine the specificity and bio-compatibility of light microscopy with the high resolution achieved in electron microscopy. More recently, these approaches have taken one step further and also super-resolution light microscopy was combined with transmission or scanning electron microscopy. This combination usually requires moving the specimen between different imaging systems, an expensive set-up and relatively complicated imaging workflows. Here we present a way to overcome these difficulties by exploiting a commercially available wide-field fluorescence microscope integrated in the specimen chamber of a Scanning Electron Microscope (SEM) to perform correlative LM/EM studies. Super-resolution light microscopy was achieved by using a recently developed algorithm - the Super-Resolution Radial Fluctuations (SRRF) - to improve the resolution of diffraction limited fluorescent images. With this combination of hardware/software it is possible to obtain correlative super-resolution light and scanning electron microscopy images in an easy and fast way. The imaging workflow is described and demonstrated on fluorescently labelled amyloid fibrils, fibrillar protein aggregates linked to the onset of multiple neurodegenerative diseases, revealing information about their polymorphism.


1955 ◽  
Vol 102 (5) ◽  
pp. 573-580 ◽  
Author(s):  
Carolyn F. Piel ◽  
Luther Dong ◽  
F.W.S. Modern ◽  
Joseph R. Goodman ◽  
Roger Moore

Nephrotoxic serum disease in rats has been studied by light and electron microscopy from 1 hour to 10 weeks after production of the disease. By light microscopy leucocytic infiltration of the glomerular capillary was observed between the 3rd and 6th hour. At 6 hours an increase in colloidal iron-positive material was observed coating the extraluminal surface of the capillaries. Also at this time swelling of the endothelial cells becomes prominent. By 72 hours, thickening of the basement membrane was observed. Glomerular capillary thrombi were observed in approximately half the tissue examined in the first 2 weeks of disease. 50 per cent of the animals showed severe chronic lesions, exudation into the capsular space, crescent formation, and obliteration of glomeruli. At 1 hour electron microscopic pictures showed that osmophilic material may line the foot processes of the epithelial cells and obliterate all but narrow channels of the space between the feet. By 6 hours thickening of the basement membrane was prominent. This change persisted throughout 10 weeks of observation. The tissue from animals which had severe chronic alterations by light microscopy revealed changes which could not be interpreted at this time.


2004 ◽  
Vol 165 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Karen R. Dell ◽  
Ronald D. Vale

The 2003 International Prize for Biology was awarded to Shinya Inoue for his pioneering work in visualizing dynamic processes within living cells using the light microscope. He and his scientific descendants are now pushing light microscopy even further by developing new techniques such as imaging single molecules, visualizing processes in living animals, and correlating results from light and electron microscopy.


1985 ◽  
Vol 63 (8) ◽  
pp. 1944-1961 ◽  
Author(s):  
K. H. Nicholls ◽  
M. Dürrschmidt

Sixteen taxa of the genera Raphidocystis, Raphidiophrys, and Pompholyxophrys from freshwater habitats in Canada, Chile, and New Zealand were studied by light and electron microscopy. Six taxa are described as new: Raphidocystis glabra, Raphidiophrys minuta, Raphidiophrys orbicularis ssp. orbicularis, R. orbicularis ssp. ovalis, Pompholyxophrys stellata, and P. ossea. New information on scale structure and arrangement based on scanning and transmission electron microscopy amplifies the taxonomic descriptions of Raphidiophrys ambigua, R. pallida, R. elegans, R. intermedia, R. marginata, R. symmetrica, Pompholyxophrys punicea, P. exigua, and P. ovuligera, which were previously imperfectly known by light microscopy only.


1993 ◽  
Vol 75 (4) ◽  
pp. 1877-1883 ◽  
Author(s):  
M. F. Konig ◽  
J. M. Lucocq ◽  
E. R. Weibel

To estimate the fraction of dense pulmonary capillary network that is perfused under physiological conditions, we developed a new method for the demonstration of in vivo capillary perfusion by light and electron microscopy. Blood plasma was labeled by 8-nm colloidal gold particles coated with rabbit serum albumin. In anesthetized rabbits, 4#x2013;5 ml of this tracer were injected into the right atrium. Two and 15 min later, the circulation was interrupted by a snare around the heart, and the lung was fixed by instillation with glutaraldehyde. Gold particles were found in the plasma space of alveolar capillaries as well as in other organs. A random sample of thin sections studied by electron microscopy revealed that the entire capillary bed of the lung was perfused at least with plasma within 2 min after tracer infusion. Light microscopy of silver-enhanced sections showed areas with different staining intensities but no obviously unperfused capillaries. The concept of capillary recruitment, which would require a significant fraction of capillaries unperfused at rest, may have to be reassessed to consider time factors as well as the two-phase nature of blood; red blood cells and plasma may take different paths.


1971 ◽  
Vol 9 (2) ◽  
pp. 475-507 ◽  
Author(s):  
E. KATHLEEN McCULLY ◽  
C. F. ROBINOW

Mitosis in Schizosaccharomyces pombe has been followed in living cells by phase-contrast microscopy and studied in fixed and suitably stained preparations by light microscopy. Successful preservation of nuclear fine structure in this yeast, not previously achieved, has allowed us to confirm and extend the observations made with light microscopy. Without first arranging themselves on a metaphase plate, mitotic chromosomes become grouped in 2 clusters radiating, finger-like, from 2 points of attachment at opposite poles of an elongating nucleus. At these 2 sites electron microscopy reveals the presence of disk-shaped electron-dense organelles which we have called kinetochore equivalents (KCE). At mitosis the KCEs are connected across the nucleus by a narrow bundle of parallel microtubules which we refer to as the spindle. Integration of our observations has led us to propose that at mitosis the separation of the KCEs and their attached chromosomes is initiated by a differential expansion of the nuclear envelope restricted to the region between recently divided KCEs and that expansion of the nuclear envelope later becomes general, resulting in a marked elongation of the nucleus. Displacement of the nuclear contents to the ends of the elongated nucleus gives it the shape of a dumbbell. The elongation of the microtubule bundle keeps in step with the elongation of the nucleus but does not appear to be the cause of it. It may have the function of keeping the separated KCEs rigidly apart. During mitosis the nucleolus persists and stretches out within the unbroken envelope of the nucleus as it elongates. Towards the end of division equal amounts of nucleolar material are found in the rounded ends of the dumbbell-shaped nucleus. The break up of the dumbbell shape into daughter nuclei seems to involve the breaking of its tenuous middle part and a pivoting of its 2 ends in opposite directions. In the course of our work on mitosis we have become aware of features in the cytoplasm of growing S. pombe cells which are described here for the first time. The cells invariably contain several prominent vacuoles containing an extremely electron-dense material which stains metachromatically with toluidine blue and may be polyphosphate. The mitochondria are of special interest for 2 reasons. First, because they have unique mesosome-like membrane invaginations and secondly, because a mitochondrion is regularly associated with the single KCE by the side of the interphase nucleus, as well as with each one of the 2 KCEs that occupy opposite ends of the intranuclear spindle during mitosis.


2000 ◽  
Vol 8 (5) ◽  
pp. 30-31
Author(s):  
Freida L. Carson

Since Blum discovered its hardening properties in 1893, formaldehyde has become the most widely used fixative in the world for specimens to be examined by light microscopy. However, since most commercial preparations of formaldehyde contain methanol, a protein precipitant, formaldehyde has been considered an unsatisfactory fixative for tissues to be examined by electron microscopy. In 1973, Carson et al., described a parallel study comparing the electron microscopic results of fixation with paraformaidehyde vs. formaldehyde. They found that there was no difference in the preservation of ultrastructural morphology provided that the buffer systems were identical. In 1976, McDowell and Trump described a fixative combining commercial formaldehyde and glutaraldehyde (4CF-1G). Both of these fixatives are dual purpose fixatives and preclude the selection of tissue for electron microscopy prior to fixation. They can both be prepared in large quantities and used for routine surgical specimens. The fixative containing formaldehyde alone does not need to be refrigerated and is stable for months; whereas, the formaldehyde-glutaraldehyde mixture should be refrigerated.


Sign in / Sign up

Export Citation Format

Share Document