scholarly journals Biological Characterization and Pluripotent Identification of Sheep Dermis-Derived Mesenchymal Stem/Progenitor Cells

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Peng Cui ◽  
Xiaohong He ◽  
Yabin Pu ◽  
Wenxiu Zhang ◽  
Ping Zhang ◽  
...  

Dermis-derived mesenchymal stem/progenitor cells (DMS/PCs) were a multipotential stem cell population, which has potential applications in the tissue damage repair and skin transplant. Although a large number of studies deal with the human DMS/PCs self-renewal and regulation, however, the study of livestock-derived DMS/PCs has rarely been reported. Here, sheep DMS/PCs were isolated from one-month-old sheep embryos and studied at the cellular and molecular level. And then the DMS/PCs biological characteristics were analysed by RT-PCR and immunofluorescence. Experimental results showed that DMS/PCs could be expanded for 48 passages and the cells viability and hereditary character were steady. In addition, the DMS/PCs makerβ-integrin, CD71, CD44, and CD73 were expressed positively through RT-PCR and immunofluorescence. Passage 3 DMS/PCs were successfully induced to differentiate into adipocytes, osteoblasts, chondrocytes, and neurocytes, respectively. The above results suggest that DMS/PCs not only have strong self-renewal capacity but also have the potential to differentiate into adipocytes, osteoblasts, chondrocytes, and neurocytes. The study provides theoretical basis and experimental evidence for potential clinical application.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 268-268
Author(s):  
Jan Jacob Schuringa ◽  
Bart-Jan Wierenga ◽  
Hein Schepers ◽  
Malcolm A.S. Moore ◽  
Edo Vellenga

Abstract Previously, we demonstrated that enforced activation of STAT5 in human cord blood (CB)-derived stem/progenitor cells results in enhanced long-term stem cell self-renewal and impaired myelopoiesis (J.J.Schuringa et al, J.Exp.Med. 2004;200:623). Now, C/EBPα was identified as a critical transcription factor that is downregulated by STAT5. Affymetrix microarray analysis on STAT5A(1*6)-transduced CD34+ cells identified C/EBPα as the most prominently downregulated gene (−3.3 fold), and these data were confirmed by RT-PCR and Western blotting. To determine the cell-biological relevance of these observations, a 4-OHT-inducible C/EBPα-ER protein was co-expressed with the STAT5A(1*6) mutant in CB CD34+ cells by using a retroviral approach. Re-expression of C/EBPα in STAT5A(1*6) cells resulted in a marked restoration of myelopoiesis as determined by morphological analyses, FACS analyses for myeloid markers such as CD11b, CD14 and CD15, and RT-PCR for myeloid-restricted genes such as g-csfr. While enforced activation of STAT5A resulted in accelerated erythropoiesis, this was blocked when C/EBPα was re-introduced into STAT5A(1*6) cells. Similarly, the proliferative advantage imposed on CD34+ cells by STAT5A(1*6) depended on the downmodulation of C/EBP as reintroduction of C/EBPα in these cells induced a quick cell cycle arrest and the onset of myeloid differentiation. At the stem/progenitor cell level, LTC-IC frequencies were elevated from 0.5% to 11% by STAT5A(1*6) as compared to controls, but these elevated LTC-IC frequencies were strongly reduced when C/EBPα was reintroduced in STAT5A(1*6) cells. Enumeration of progenitors in methylcellulose assays revealed similar results, the number of CFCs was reduced over 10-fold when C/EBPα was expressed in STAT5A(1*6) cells. Also, secondary CAFCs and long-term cultures could only be generated from STAT5A(1*6) expressing cells, but not from cells that co-expressed STAT5A(1*6) and C/EBPα. Taken together, these data indicate that STAT5-induced self-renewal and impaired myelopoiesis involves downmodulation of C/EBPα.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Devaveena Dey ◽  
Guodong Pan ◽  
Nadimpalli Ravi S. Varma ◽  
Suresh Selvaraj Palaniyandi

Stem/progenitor cells from multiple tissues have been isolated based on enhanced activity of cytosolic aldehyde dehydrogenase (ALDH) enzyme. ALDH activity has emerged as a reliable marker for stem/progenitor cells, such thatALDHbright/highcells from multiple tissues have been shown to possess enhanced stemness properties (self-renewal and multipotency). So far though, not much is known about ALDH activity in specific fetal organs. In this study, we sought to analyze the presence and activity of the ALDH enzyme in the stem cell antigen-1-positive (Sca-1+) cells of fetal human heart. Biochemical assays showed that a subpopulation of Sca-1+ cells (15%) possess significantly high ALDH1 activity. This subpopulation showed increased expression of self-renewal markers compared to theALDHlowfraction. TheALDHhighfraction also exhibited significant increase in proliferation and pro-survival gene expression. In addition, only theALDHhighand not theALDHlowfraction could give rise to all the cell types of the original population, demonstrating multipotency.ALDHhighcells showed increased resistance against aldehyde challenge compared toALDHlowcells. These results indicate thatALDHhighsubpopulation of the cultured human fetal cells has enhanced self-renewal, multipotency, high proliferation, and survival, indicating that this might represent a primitive stem cell population within the fetal human heart.


Diabetologia ◽  
2021 ◽  
Author(s):  
Nima Purvis ◽  
Sweta Kumari ◽  
Dhananjie Chandrasekera ◽  
Jayanthi Bellae Papannarao ◽  
Sophie Gandhi ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1040
Author(s):  
Asuka Shirakawa ◽  
Yoshiyuki Manabe ◽  
Koichi Fukase

Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6083-6090 ◽  
Author(s):  
Ann Dahlberg ◽  
Colleen Delaney ◽  
Irwin D. Bernstein

AbstractDespite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field.


2021 ◽  
Vol 11 (12) ◽  
pp. 2337-2345
Author(s):  
Junhui Lai ◽  
Qin Yang ◽  
Ruining Liang ◽  
Weijun Guan ◽  
Xiuxia Li

The growth plate is essential in long bone formation and contains a wealth of skeletal stem cells (SSCs). Though the origin and the mechanism for SSCs generation remain uncertain, recent studies demonstrate the transition from cartilage to bone that in the lineage for bone development. SSCs possesses the ability to differentiate into bone and cartilage in vitro. In this research, we aimed to isolate and culture the skeletal stem cells from bovine cattle and then studied its biological characterization. The results showed that these bovine SSCs are positive for PDPN+CD73+CD164+CD90+CD44+ cell surface bio-markers, they are capable of self-renewal and differentiation. Our dates proved that SSCs exists in bovine’s long bone.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Toru Hosoda ◽  
Konrad Urbanek ◽  
Adriana Bastos Carvalho ◽  
Claudia Bearzi ◽  
Silvana Bardelli ◽  
...  

Myocardial regeneration mediated by cardiac progenitor cells (CPCs) results in the partial recovery of the infarcted heart but the newly formed myocytes within the necrotic tissue have fetal-neonatal characteristics. In contrast, CPC activation in the remote viable myocardium results in the formation of mature myocytes, suggesting that CPC differentiation is conditioned by the surrounding cells. Thus, the hypothesis is raised that microRNAs (miRs) that are highly expressed in myocytes and are absent in CPCs, may translocate through gap junctions to adjacent CPCs promoting their differentiation. By employing miR array and Q-RT-PCR, miR-499 was found to be ~500-fold more expressed in myocytes than CPCs. Additionally, we demonstrated that miR-499 translocates from neighboring cells to CPCs through the formation of gap junctions. The translocated miR-499 was functional and repressed the expression of target genes. Among 200 putative targets of miR-499, we have elected to study Sox6 and Rod1. The validation of these putative miR-499-targets was obtained by reporter assays; cells transfected with miR-499 together with plasmids carrying luciferase and the 3′-UTR region of Sox6 or Rod1 show the expected decrease in luciferase activity. Transcripts of Sox6 and Rod1 were measured by Q-RT-PCR in myocytes and CPCs; Sox6 mRNA was 2-fold higher and Rod1 mRNA was 98% lower in myocytes than CPCs. However, the protein levels of Sox6 and Rod1 were significantly lower in myocytes than CPCs suggesting that miR-499 promotes degradation and/or inhibition of translation of these target genes. To document miR-499 function, CPCs were transfected with a miR-499-expression vector and cell proliferation and differentiation were evaluated 3 days later. BrdU incorporation decreased 60% and the cells displayed a marked upregulation of the myocyte-specific transcription factors Nkx2.5 and MEF2C. Similar results were obtained when Sox6 and Rod1 were selectively blocked with siRNA. In both cases, the number of Nkx2.5- and MEF2C-positive cells increased 2–3-fold. Thus, our data indicate that miR-499 translocates via gap junction from myocytes to CPCs where miR-499 is a crucial modulator of the differentiation of CPCs into cardiomyocytes through the repression of Sox6 and Rod1.


2018 ◽  
Vol 115 (12) ◽  
pp. E2725-E2733 ◽  
Author(s):  
Yulong Cai ◽  
Xiaotong Tang ◽  
Xi Chen ◽  
Xin Li ◽  
Ying Wang ◽  
...  

The dentate gyrus (DG) of the hippocampus is a laminated brain region in which neurogenesis begins during early embryonic development and continues until adulthood. Recent studies have implicated that defects in the neurogenesis of the DG seem to be involved in the genesis of autism spectrum disorders (ASD)-like behaviors. Liver X receptor β (LXRβ) has recently emerged as an important transcription factor involved in the development of laminated CNS structures, but little is known about its role in the development of the DG. Here, we show that deletion of the LXRβ in mice causes hypoplasia in the DG, including abnormalities in the formation of progenitor cells and granule cell differentiation. We also found that expression of Notch1, a central mediator of progenitor cell self-renewal, is reduced in LXRβ-null mice. In addition, LXRβ deletion in mice results in autistic-like behaviors, including abnormal social interaction and repetitive behavior. These data reveal a central role for LXRβ in orchestrating the timely differentiation of neural progenitor cells within the DG, thereby providing a likely explanation for its association with the genesis of autism-related behaviors in LXRβ-deficient mice.


1997 ◽  
Vol 55 (3) ◽  
pp. R2111-R2114 ◽  
Author(s):  
Muhammad Sahimi ◽  
Ali Reza Mehrabi ◽  
Faramarz Naeim

Sign in / Sign up

Export Citation Format

Share Document