scholarly journals Bioinspired Fingertip for Anthropomorphic Robotic Hands

2014 ◽  
Vol 11 (1-2) ◽  
pp. 25-38 ◽  
Author(s):  
Marco Controzzi ◽  
Marco D'Alonzo ◽  
Carlo Peccia ◽  
Calogero Maria Oddo ◽  
Maria Chiara Carrozza ◽  
...  

Background: An artificial fingertip with mechanical features and appearance similar to the human fingertip could represent a significant step forward towards the development of the next generation artificial hands. However, so far, a fingertip showing a good trade-off among mechanical features, appearance and anthropomorphism, along with its 3D computational model, is still missing.Objective: To explore and develop an artificial fingertip demonstrating a mechanical response similar to the human fingertip, in order to improve the grasp stability of robotic hands.Methods: Taking inspiration from the multi-layered structure of the human finger, novel artificial fingertips, composed of a rigid core and covered by layers of polymeric materials with different degrees of stiffness and topped by a hard nail were developed. An accurate 3D finite element (FE) model was also developed in order to simulate and evaluate the internal mechanical behavior of the prototypes under external indentations. The mechanical response of the prototypes was assessed and compared with that of the human fingertip and the FE model results, under different experimental conditions. Finally, the artificial fingertips were integrated into an anthropomorphic robotic hand and evaluated in grip tests, in order to compare the grasp stability with respect to conventional stiff (metal) fingertips.Results: The developed prototypes demonstrated a response to compression tests similar to the human finger and the FE model showed a discrete accuracy (mean error 7%). Finally, an increased ability (by 96%) in stably holding objects during precision grips with respect to conventional stiff fingers was demonstrated.Conclusion: Multi-layered biomimetic fingertips can improve grasp stability and cosmetic appearance of anthropomorphic robot hands.

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Hirofumi Niiya ◽  
Kenichi Oda ◽  
Daisuke Tsuji ◽  
Hiroaki Katsuragi

Abstract The formation of aggregates consisting of snow, water, and tephra has been reported in small-scale experiments on three-phase flows containing tephra, water, and snow, representing lahars triggered by snowmelt. Such aggregates reduce the mobility of mud flow. However, the formation mechanism of such aggregates under various conditions has not been investigated. To elucidate the formation conditions and mechanical properties of the aggregates, we performed mixing experiments with materials on a rotating table and compression tests on the resulting aggregates with a universal testing machine in a low-temperature room at $$0\,^{\circ }\text {C}$$ 0 ∘ C . From experiments with varying component ratios of the mixture and tephra diameter, the following results were obtained: (i) the aggregate grew rapidly and reached maturity after a mixing time of 5 min; (ii) the mass of aggregates increased with snow concentration, exhibiting an approximately linear relationship; (iii) single aggregates with large mass formed at lower and higher tephra concentrations, whereas multiple aggregates with smaller mass were observed at intermediate concentrations; (iv) the shape of the aggregate satisfied the similarity law for an ellipsoid; (v) the compressive mechanical behavior could be modeled by an empirical nonlinear model. The obtained mechanical properties of the aggregates were independent of the experimental conditions; (vi) scaling analysis based on the Reynolds number and the strength of the aggregates showed that the aggregates cannot form in ice-slurry lahars. Our findings suggest that low-speed lahars containing snow and ice are likely to generate aggregates, but snow and ice in the ice-slurry lahars are dispersed without such aggregates.


Author(s):  
Dong-Feng Li ◽  
Noel P. O’Dowd ◽  
Catrin M. Davies ◽  
Shu-Yan Zhang

In this study, the deformation behavior of an austenitic stainless steel is investigated at the microscale by means of in-situ neutron diffraction (ND) measurements in conjunction with finite-element (FE) simulations. Results are presented in terms of (elastic) lattice strains for selected grain (crystallite) families. The FE model is based on a crystallographic (slip system based) representation of the deformation at the microscale. The present study indicates that combined in-situ ND measurement and micromechanical modelling provides an enhanced understanding of the mechanical response at the microscale in engineering steels.


Author(s):  
Mahdi Haghshenas-Jaryani ◽  
Muthu B. J. Wijesundara

This paper presents the development of a framework based on a quasi-statics concept for modeling and analyzing the physical human-robot interaction in soft robotic hand exoskeletons used for rehabilitation and human performance augmentation. This framework provides both forward and inverse quasi-static formulations for the interaction between a soft robotic digit and a human finger which can be used for the calculation of angular motions, interaction forces, actuation torques, and stiffness at human joints. This is achieved by decoupling the dynamics of the soft robotic digit and the human finger with similar interaction forces acting on both sides. The presented theoretical models were validated by a series of numerical simulations based on a finite element model which replicates similar human-robot interaction. The comparison of the results obtained for the angular motion, interaction forces, and the estimated stiffness at the joints indicates the accuracy and effectiveness of the quasi-static models for predicting the human-robot interaction.


2014 ◽  
Vol 695 ◽  
pp. 588-591
Author(s):  
Khairul Salleh Basaruddin ◽  
Ruslizam Daud

This study aims to investigate the influence of trabecular bone in human mandible bone on the mechanical response under implant load. Three dimensional voxel finite element (FE) model of mandible bone was reconstructed from micro-computed tomography (CT) images that were captured from bone specimen. Two FE models were developed where the first consists of cortical bone, trabecular bone and implants, and trabecular bone part was excluded in the second model. A static analysis was conducted on both models using commercial software Voxelcon. The results suggest that trabecular bone contributed to the strength of human mandible bone and to the effectiveness of load distribution under implant load.


2019 ◽  
Vol 11 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Benedict Jain A.R. Tony ◽  
Masilamany S. Alphin

SummaryStudy aim: Interactions between the fingers and a handle can be analyzed using a finite element finger model. Hence, the biomechanical response of a hybrid human finger model during contact with varying diameter cylindrical handles was investigated numerically in the present study using ABAQUS/CAE.Materials and methods: The finite element index finger model consists of three segments: the proximal, middle, and distal phalanges. The finger model comprises skin, bone, subcutaneous tissue and nail. The skin and subcutaneous tissues were assumed to be non-linearly elastic and linearly visco-elastic. The FE model was applied to predict the contact interaction between the fingers and a handle with 10 N, 20 N, 40 N and 50 N grip forces for four different diameter handles (30 mm, 40 mm, 44mm and 50 mm). The model predictions projected the biomechanical response of the finger during the static gripping analysis with 200 incremental steps.Results: The simulation results showed that the increase in contact area reduced the maximal compressive stress/strain and also the contact pressure on finger skin. It was hypothesized in this study that the diameter of the handle influences the stress/strain and contact pressure within the soft tissue during the contact interactions.Conclusions: The present study may be useful to study the behavior of the finger model under the static gripping of hand-held power tools.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fenghui Li ◽  
Yunhai Cheng ◽  
Fei Wu ◽  
Chang Su ◽  
Gangwei Li

Shotcrete is often subject to poor ductility and cracking problems, particularly under high stresses. In order to deal with these issues, the feasibility of adding polypropylene macrofibers to shotcrete was verified. To ascertain the supporting effect, dry shotcrete, wet shotcrete, and wet polypropylene macrofiber-reinforced shotcrete (WPMS) were used as samples. Furthermore, the mechanical response characteristics thereof in uniaxial compression tests were compared and analyzed by acoustic emission (AE) monitoring. The results showed that the three materials were brittle, but the ductility, residual strength, and bearing capacity of polypropylene macrofiber-reinforced shotcrete were significantly enhanced. The energy absorption value of plain shotcrete was higher in the cracking stage, while that of polypropylene macrofiber-reinforced shotcrete was greater in the postpeak stage, which showed that the polypropylene macrofiber-reinforced shotcrete had the characteristics of a high crack-initiation strength and toughness. Besides, the energy release from fiber shotcrete occurred after the peak stress rather than near the peak stress. The average energy absorbed by polypropylene macrofiber-reinforced shotcrete was significantly higher than that in dry shotcrete and wet shotcrete, which implied that polypropylene macrofiber-reinforced shotcrete could mitigate the brittle instability of a shotcrete layer. A constitutive model of damage statistics was established based on the test data. The comparison between the experimental data and the fitting results can reflect the characteristics of the total stress-strain curve of such shotcrete. The results provide a basis for the optimization of polypropylene macrofiber-reinforced shotcrete layers.


Author(s):  
Raymond Guo ◽  
Vienny Nguyen ◽  
Lei Niu ◽  
Lyndon Bridgwater

There has been continuous research and development to add more actuators into robotic hands to increase their dexterity. However, dexterous hands require complex control and are more costly to build. Therefore, many researchers and commercial enterprises have begun developing under-actuated robotic hands with fewer actuators and passive mechanical adaptation to not only reduce complexity and cost, but to also achieve better grasp performance in unstructured settings. This paper presents the design and analysis of the Valkyrie hand — a four fingered, tendon-driven, and under-actuated robotic hand that balances dexterity and simplicity with total 14 joints, and six degrees of actuated freedom. A derivation is provided of general dynamic and static equations for the analysis of a tendon driven mechanism, based on Euler-Lagrange formulation. The equations were used to evaluate the design parameters’ impact on the hand grasp shape and closing effort, and also validated against a design case study.


Author(s):  
Yue Liu ◽  
Weicheng Gao ◽  
Wei Liu ◽  
Zhou Hua

This paper presents an investigation on the mechanical response of the Nomex honeycomb core subjected to flatwise compressive loading. Thin plate elastic in-plane compressive buckling theory is used to analyze the Nomex honeycomb core cell wall. A mesoscopic finite element (FE) model of honeycomb sandwich structure with the Nomex honeycomb cell walls is established by employing ABAQUS/Explicit shell elements. The compressive strength and compressive stiffness of Nomex honeycomb core with different heights and thickness of cell walls, i.e. double cell walls and single cell walls, are analyzed numerically using the FE model. Flatwise compressive tests are also carried out on bare honeycomb cores to validate the numerical method. The results suggest that the compressive strength and compression stiffness are related to the geometric dimensions of the honeycomb core. The Nomex honeycomb core with a height of 6 mm has a higher strength than that of 8 mm. In addition, the honeycomb core with lower height possesses stronger anti-instability ability, including the compressive strength and stiffness. The proposed mesoscopic model can effectively simulate the crushing process of Nomex honeycomb core and accurately predict the strength and stiffness of honeycomb sandwich panels. Our work is instructive to the practical applications in engineering.


2019 ◽  
Vol 43 (4) ◽  
pp. 443-453
Author(s):  
Stephen M. Handrigan ◽  
Sam Nakhla

An investigation to determine the effect of porosity concentration and location on elastic modulus is performed. Due to advancements in testing methods, the manufacturing and testing of microbeams to obtain mechanical response is possible through the use of focused ion beam technology. Meanwhile, rigorous analysis is required to enable accurate extraction of the elastic modulus from test data. First, a one-dimensional investigation with beam theory, Euler–Bernoulli and Timoshenko, was performed to estimate the modulus based on load-deflection curve. Second, a three-dimensional finite element (FE) model in Abaqus was developed to identify the effect of porosity concentration. Furthermore, the current work provided an accurate procedure to enable accurate extraction of the elastic modulus from load-deflection data. The use of macromodels such as beam theory and three-dimensional FE model enabled enhanced understanding of the effect of porosity on modulus.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Santiago T. Puente ◽  
Lucía Más ◽  
Fernando Torres ◽  
and Francisco A. Candelas

This article presents a multiplatform application for the tele-operation of a robot hand using virtualization in Unity 3D. This approach grants usability to users that need to control a robotic hand, allowing supervision in a collaborative way. This paper focuses on a user application designed for the 3D virtualization of a robotic hand and the tele-operation architecture. The designed system allows for the simulation of any robotic hand. It has been tested with the virtualization of the four-fingered Allegro Hand of SimLab with 16 degrees of freedom, and the Shadow hand with 24 degrees of freedom. The system allows for the control of the position of each finger by means of joint and Cartesian co-ordinates. All user control interfaces are designed using Unity 3D, such that a multiplatform philosophy is achieved. The server side allows the user application to connect to a ROS (Robot Operating System) server through a TCP/IP socket, to control a real hand or to share a simulation of it among several users. If a real robot hand is used, real-time control and feedback of all the joints of the hand is communicated to the set of users. Finally, the system has been tested with a set of users with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document