scholarly journals Phylogenomic and Molecular Demarcation of the Core Members of the PolyphyleticPasteurellaceaeGeneraActinobacillus,Haemophilus, andPasteurella

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Sohail Naushad ◽  
Mobolaji Adeolu ◽  
Nisha Goel ◽  
Bijendra Khadka ◽  
Aqeel Al-Dahwi ◽  
...  

The generaActinobacillus, Haemophilus,andPasteurellaexhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters ofActinobacillus, Haemophilus,andPasteurellaspecies which represent the “sensu stricto” members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared bysensu strictomembers ofActinobacillus, Haemophilus,andPasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing generaAggregatibacterandMannheimia, respectively. It is now possible to demarcate the generaActinobacillus sensu stricto, Haemophilus sensu stricto,andPasteurella sensu strictoon the basis of discrete molecular signatures. The other members of the generaActinobacillus, Haemophilus,andPasteurellathat do not fall within the “sensu stricto” clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera.

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3203-3215 ◽  
Author(s):  
Chantal Campbell ◽  
Mobolaji Adeolu ◽  
Radhey S. Gupta

The class Negativicutes is currently divided into one order and two families on the basis of 16S rRNA gene sequence phylogenies. We report here comprehensive comparative genomic analyses of the sequenced members of the class Negativicutes to demarcate its different evolutionary groups in molecular terms, independently of phylogenetic trees. Our comparative genomic analyses have identified 14 conserved signature indels (CSIs) and 48 conserved signature proteins (CSPs) that either are specific for the entire class or differentiate four main groups within the class. Two CSIs and nine CSPs are shared uniquely by all or most members of the class Negativicutes, distinguishing this class from all other sequenced members of the phylum Firmicutes. Four other CSIs and six CSPs were specific characteristics of the family Acidaminococcaceae, two CSIs and four CSPs were uniquely present in the family Veillonellaceae, six CSIs and eight CSPs were found only in Selenomonas and related genera, and 17 CSPs were identified uniquely in Sporomusa and related genera. Four additional CSPs support a pairing of the groups containing the genera Selenomonas and Sporomusa. We also report detailed phylogenetic analyses for the Negativicutes based on core protein sequences and 16S rRNA gene sequences, which strongly support the four main groups identified by CSIs and by CSPs. Based on the results from different lines of investigation, we propose a division of the class Negativicutes into an emended order Selenomonadales containing the new families Selenomonadaceae fam. nov. and Sporomusaceae fam. nov. and two new orders, Acidaminococcales ord. nov. and Veillonellales ord. nov., respectively containing the families Acidaminococcaceae and Veillonellaceae.


2019 ◽  
Author(s):  
Mosè Manni ◽  
Felipe A. Simao ◽  
Hugh M. Robertson ◽  
Marco A. Gabaglio ◽  
Robert M. Waterhouse ◽  
...  

AbstractThe dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gbp draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion which might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behaviour, and duplicated apoptotic genes might underlie its high regenerative potential.The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.


2002 ◽  
Vol 33 (4) ◽  
pp. 361-386 ◽  
Author(s):  
Vest Pedersen

AbstractThe phylogenetics of 40 taxa of European bumblebees were analysed based on PCR amplified and direct sequenced DNA from one region of the mitochondrial gene Cytochrome Oxidase I (1046 bp) and for 26 taxa from two regions in the nuclear gene Elongation Factor 1α (1056 bp). The sequences were aligned to the corresponding sequences in the honey bee. Phylogenetic analyses based on parsimony, as well as maximum likelihood, indicate that the bumblebees can be separated into several well-supported clades. Most of the terminal clades correspond very well with the clades known from former phylogenetic analyses based on morphology and recognized as the subgenera: Mendacibombus, Confusibombus, Psithyrus, Thoracobombus, Megabombus, Rhodobombus, Kallobombus, Alpinobombus, Subterraneobombus, Alpigenobombus, Pyrobombus, Bombus and Melanobombus. All the cuckoo bumblebees form a well-supported clade, the subgenus Psithyrus, within the true bumblebees. All the analyses place Kallobombus as the most basal taxon in contradiction to former analyses. The other deeper nodes of the phylogenetic trees, which are weakly supported, deviate significantly from former published trees - especially the trees based on mtCO-I. Presumably, the reasons are that multiple hits and the strong bias of the bases A and T blur the relationships in the deepest part of the trees. Analyses of the region in mtCO-I show a very strong A+T bias (A+T= 75%), which also indicate preferences in the use of codons with A or T in third positions. In closely related entities, there is only a weak transversion bias (A+T). In the studied regions in EF 1-α, no nucleotide bias is observed. The observed differences in bases between the investigated taxa are relatively small and the gene is too conserved to solve all the questions that the analyses of the deeper nodes using mtCO-I raise.


Holzforschung ◽  
2018 ◽  
Vol 72 (4) ◽  
pp. 337-345 ◽  
Author(s):  
Yu Song ◽  
Xin Yao ◽  
Bing Liu ◽  
Yunhong Tan ◽  
Richard T. Corlett

AbstractAlseodaphneis a genus of timber trees (ca. 40 spp.) belonging to thePerseagroup of the Lauraceae. It is widely distributed in tropical Asia, but is often confused withDehaasiaandNothaphoebe, and the systematics of the genus is unclear. Here, the complete chloroplast genome sequences ofA. semecarpifoliawill be reported, the type species ofAlseodaphne, and two China-endemic species,A. gracilisandA. huanglianshanensis. The three plastomes were 153 051 bp, 153 099 bp and 153 070 bp, respectively. Comparative genomic analyses indicate that the threeAlseodaphneplastomes have similar genome size and those are very different with previously published plastomes of Lauraceae in length. The length difference is directly caused by inverted repeats expansion/contraction. Four highly variable loci includingpsbD-trnM,ndhF-rpl32,rpl32-trnLandycf1among the threeAlseodaphnespecies were identified as useful plastid candidate barcodes forAlseodaphneand Lauraceae species. Phylogenetic analyses based on 12 complete plastomes of Lauraceae species confirm a monophyleticPerseagroup comprising species ofAlseodaphne,Phoebe,PerseaandMachilus.


2018 ◽  
Vol 66 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Sándor Hornok ◽  
Alexandra Corduneanu ◽  
Jenő Kontschán ◽  
Katinka Bekő ◽  
Krisztina Szőke ◽  
...  

Babesia vesperuginis is the only piroplasm known to infect bats. Unlike most members of the genus Babesia, it is probably transmitted by a soft tick species (i.e. Argas vespertilionis). Recently, two studies have been conducted to clarify the phylogenetic status of this species, and both agreed on placing it into a basal position among Babesia sensu stricto (s.s.). However, several important groups of piroplasms were not included in the already reported phylogenetic trees of B. vesperuginis isolates. Therefore, the aim of the present study was to amplify an approx. 950-bp fragment of the cytochrome c oxidase subunit 1 (cox1) gene of B. vesperuginis from A. vespertilionis specimens, and to compare its sequences with those from other piroplasmid groups in a broader phylogenetic context. Sequence comparisons focusing on either 18S rRNA or cox1 genes, as well as phylogenetic analyses involving separate and concatenated 18S rRNA and cox1 sequences indicate that B. vesperuginis is more closely related to the phylogenetic group of Theileriidae than to Babesia s.s. In particular, B. vesperuginis clustered closest to Cytauxzoon felis and the ‘prototheilerid’ B. conradae. The results of this study highlight that B. vesperuginis is a unique and taxonomically important species, which should be included in future studies aimed at resolving the comprehensive phylogeny of Piroplasmida.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 754
Author(s):  
Yupeng Wu ◽  
Hui Fang ◽  
Jiping Wen ◽  
Juping Wang ◽  
Tianwen Cao ◽  
...  

In this study, the complete mitochondrial genomes (mitogenomes) of Hestina persimilis and Hestinalis nama (Nymphalidae: Apaturinae)were acquired. The mitogenomes of H. persimilis and H. nama are 15,252 bp and 15,208 bp in length, respectively. These two mitogenomes have the typical composition, including 37 genes and a control region. The start codons of the protein-coding genes (PCGs) in the two mitogenomes are the typical codon pattern ATN, exceptCGA in the cox1 gene. Twenty-one tRNA genes show a typical clover leaf structure, however, trnS1(AGN) lacks the dihydrouridine (DHU) stem. The secondary structures of rrnL and rrnS of two species were predicted, and there are several new stem loops near the 5’ of rrnL secondary structure. Based on comparative genomic analysis, four similar conservative structures can be found in the control regions of these two mitogenomes. The phylogenetic analyses were performed on mitogenomes of Nymphalidae. The phylogenetic trees show that the relationships among Nymphalidae are generally identical to previous studies, as follows: Libytheinae\Danainae + ((Calinaginae + Satyrinae) + Danainae\Libytheinae + ((Heliconiinae + Limenitidinae) + (Nymphalinae + (Apaturinae + Biblidinae)))). Hestinalisnama isapart fromHestina, andclosely related to Apatura, forming monophyly.


2020 ◽  
Vol 70 (11) ◽  
pp. 5753-5798 ◽  
Author(s):  
Radhey S. Gupta ◽  
Sudip Patel ◽  
Navneet Saini ◽  
Shu Chen

To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium . The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer ‘ Bacillus kyonggiensi s’ to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis ) or the Cereus clade (containing B. anthracis and B. cereus ). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.


2020 ◽  
Author(s):  
Pieter De Maayer ◽  
Talia Pillay ◽  
Teresa A Coutinho

Abstract Background: Flagellar motility is an efficient means of movement that allows bacteria to successfully colonize and compete with other microorganisms within their respective environments. The production and functioning of flagella is highly energy intensive and therefore flagellar motility is a tightly regulated process. Despite this, some bacteria have been observed to possess multiple flagellar systems which allow distinct forms of motility. Results: Comparative genomic analyses showed that, in addition to the previously identified primary peritrichous (flag-1) and secondary, lateral (flag-2) flagellar loci, three novel types of flagellar loci, varying in both gene content and gene order, are encoded on the genomes of members of the order Enterobacterales. The flag-3 and flag-4 loci encode predicted peritrichous flagellar systems while the flag-5 locus encodes a polar flagellum. In total, 798/4,028 (~20%) of the studied taxa incorporate dual flagellar systems, while nineteen taxa incorporate three distinct flagellar loci. Phylogenetic analyses indicate the complex evolutionary histories of the flagellar systems among the Enterobacterales. Conclusions: Supernumerary flagellar loci are relatively common features across a broad taxonomic spectrum in the order Enterobacterales. Here, we report the occurrence of five (flag-1 to flag-5) flagellar loci on the genomes of enterobacterial taxa, as well as the occurrence of three flagellar systems in select members of the Enterobacterales. Considering the energetic burden of maintaining and operating multiple flagellar systems, they are likely to play a role in the ecological success of members of this family and we postulate on their potential biological functions.


2014 ◽  
Vol 65 (1) ◽  
pp. 52 ◽  
Author(s):  
S. Somma ◽  
A. L. Petruzzella ◽  
A. F. Logrieco ◽  
G. Meca ◽  
O. S. Cacciola ◽  
...  

The Fusarium graminearum species complex (FGSC) is a pathogen of durum wheat and other cereals worldwide. The complex consists of at least 15 species that can produce various mycotoxins, including trichothecenes, associated with human and animals toxicoses. In particular, deoxynivalenol (DON), nivalenol (NIV) and their different acetylated derivatives can be produced by the different chemotypes of the complex. In this study, 90 strains, isolated mainly from wheat in Italy and belonging to the FGSC, were assessed for their phylogeny and their chemotype and trichothecene genotype. Almost all strains of the FGSC belonged to F. graminearum sensu stricto, whereas two strains were F. cortaderiae. On the other hand, all three chemotypes, 3ADON, 15ADON and NIV, occurred; 15ADON was the most common molecular chemotype. The data show that the species composition of the Italian FGSC is homogeneous, whereas wide chemotype variability can occur within F. graminearum sensu stricto.


2015 ◽  
Vol 28 (7) ◽  
pp. 811-824 ◽  
Author(s):  
José-María Vinardell ◽  
Sebastián Acosta-Jurado ◽  
Susanne Zehner ◽  
Michael Göttfert ◽  
Anke Becker ◽  
...  

Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III–secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.


Sign in / Sign up

Export Citation Format

Share Document