scholarly journals T-S Fuzzy Model Based Control Strategy for the Networked Suspension Control System of Maglev Train

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guang He ◽  
Jie Li ◽  
Peng Cui ◽  
Yun Li

The control problem for the networked suspension control system of maglev train with random induced time delay and packet dropouts is investigated. First, Takagi-Sugeno (T-S) fuzzy models are utilized to represent the discrete-time nonlinear networked suspension control system, and the parameters uncertainties of the nonlinear model have also been taken into account. The controllers take the form of parallel distributed compensation. Then, a sufficient condition for the stability of the networked suspension control system is derived. Based on the criteria, the state feedback fuzzy controllers are obtained, and the controller gains can be computed by using MATLAB LMI Toolbox directly. Finally, both the numerical simulations and physical experiments on the full-scale single bogie of CMS-04 maglev train have been accomplished to demonstrate the effectiveness of this proposed method.

Author(s):  
Jun Zhao ◽  
Hugang Han ◽  
◽  

Although the Takagi–Sugeno fuzzy model is effective for representing the dynamics of a plant to be controlled, two main questions arise when using it just as other models: 1) how to deal with the gap, which is referred to as uncertainty in this study, between the model and the concerned plant, and how to estimate the state information when it cannot be obtained directly, especially with the existence of uncertainty; 2) how to design a controller that guarantees a stable control system where only the estimated state is available and an uncertainty exists. While the existing studies cannot effectively observe the state and the resulting control systems can only be managed to be uniformly stable, this study first presents a state observer capable of precisely estimating the state regardless of the existence of uncertainty. Then, based on the state observer, an uncertainty observer is derived, which can track the trajectory of uncertainty whenever it occurs in a real system. Finally, a controller based on both observers is presented, which guarantees the asymptotic stability of the resulting control system.


2012 ◽  
Vol 482-484 ◽  
pp. 1801-1804
Author(s):  
Yang Yu ◽  
Wei Wang

The paper studies fuzzy fault control for a class of nonlinear system with input delay based on T-S fuzzy model. The state feedback controller that ensures the stability of fuzzy tolerant control system is given via Lyapunov theory and derived in terms of LMI and the results are delay-dependent. Simulation examples are given to illustrate the effectiveness of the approach.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Zhenyu Zhu ◽  
Zhanshan Zhao ◽  
Haoliang Cui ◽  
Fengdong Shi

This paper is based on the Takagi-Sugeno (T-S) fuzzy models to construct a coronary artery system (CAS) T-S fuzzy controller and considers the uncertainties of system state parameters in CAS. We propose the fuzzy model of CAS with uncertainties. By using T-S fuzzy model of CAS and the use of parallel distributed compensation (PDC) concept, the same fuzzy set is assigned to T-S fuzzy controller. Based on this, a PDC controller whose fuzzy rules correspond to the fuzzy model is designed. By constructing a suitable Lyapunov-Krasovskii function (LKF), the stability conditions of the linear matrix inequality (LMI) are exported. Simulation results show that the method proposed in this paper is correct and effective and has certain practical significance.


2004 ◽  
Vol 471-472 ◽  
pp. 557-562
Author(s):  
Chen Long ◽  
Hao Bin Jiang ◽  
M.C. Yang

A semi-active vehicle suspension model is built, and semi-active suspension control system based on T-S fuzzy neural control strategy is designed. Then, the stability of the control system is analyzed and the condition of stability of the system is deduced. Simulations and experiments are carried out and their results accord with each other, which shows that the controller is stable, valid and has strong robust performance.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Wen-Jer Chang ◽  
Yu-Wei Lin ◽  
Yann-Horng Lin ◽  
Chin-Lin Pen ◽  
Ming-Hsuan Tsai

In many practical systems, stochastic behaviors usually occur and need to be considered in the controller design. To ensure the system performance under the effect of stochastic behaviors, the controller may become bigger even beyond the capacity of practical applications. Therefore, the actuator saturation problem also must be considered in the controller design. The type-2 Takagi-Sugeno (T-S) fuzzy model can describe the parameter uncertainties more completely than the type-1 T-S fuzzy model for a class of nonlinear systems. A fuzzy controller design method is proposed in this paper based on the Interval Type-2 (IT2) T-S fuzzy model for stochastic nonlinear systems subject to actuator saturation. The stability analysis and some corresponding sufficient conditions for the IT2 T-S fuzzy model are developed using Lyapunov theory. Via transferring the stability and control problem into Linear Matrix Inequality (LMI) problem, the proposed fuzzy control problem can be solved by the convex optimization algorithm. Finally, a nonlinear ship steering system is considered in the simulations to verify the feasibility and efficiency of the proposed fuzzy controller design method.


2021 ◽  
pp. 107754632110069
Author(s):  
Parvin Mahmoudabadi ◽  
Mahsan Tavakoli-Kakhki

In this article, a Takagi–Sugeno fuzzy model is applied to deal with the problem of observer-based control design for nonlinear time-delayed systems with fractional-order [Formula: see text]. By applying the Lyapunov–Krasovskii method, a fuzzy observer–based controller is established to stabilize the time-delayed fractional-order Takagi–Sugeno fuzzy model. Also, the problem of disturbance rejection for the addressed systems is studied via the state-feedback method in the form of a parallel distributed compensation approach. Furthermore, sufficient conditions for the existence of state-feedback gains and observer gains are achieved in the terms of linear matrix inequalities. Finally, two numerical examples are simulated for the validation of the presented methods.


Author(s):  
Xiuchun Luan ◽  
Jie Zhou ◽  
Yu Zhai

A state differential feedback control system based Takagi-Sugeno (T-S) fuzzy model is designed for load-following operation of nonlinear nuclear reactor whose operating points vary within a wide range. Linear models are first derived from the original nonlinear model on several operating points. Next the fuzzy controller is designed via using the parallel distributed compensation (PDC) scheme with the relative neutron density at the equilibrium point as the premise variable. Last the stability analysis is given by means of linear matrix inequality (LMI) approach, thus the control system is guaranteed to be stable within a large range. The simulation results demonstrate that the control system works well over a wide region of operation.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shu Wang ◽  
Xuan Zhao ◽  
Qiang Yu

Vehicle stability control should accurately interpret the driving intention and ensure that the actual state of the vehicle is as consistent as possible with the desired state. This paper proposes a vehicle stability control strategy, which is based on recognition of the driver’s turning intention, for a dual-motor drive electric vehicle. A hybrid model consisting of Gaussian mixture hidden Markov (GHMM) and Generalized Growing and Pruning RBF (GGAP-RBF) neural network is constructed to recognize the driver turning intention in real time. The turning urgency coefficient, which is computed on the basis of the recognition results, is used to establish a modified reference model for vehicle stability control. Then, the upper controller of the vehicle stability control system is constructed using the linear model predictive control theory. The minimum of the quadratic sum of the working load rate of the vehicle tire is taken as the optimization objective. The tire-road adhesion condition, performance of the motor and braking system, and state of the motor are taken as constraints. In addition, a lower controller is established for the vehicle stability control system, with the task of optimizing the allocation of additional yaw moment. Finally, vehicle tests were carried out by conducting double-lane change and single-lane change experiments on a platform for dual-motor drive electric vehicles by using the virtual controller of the A&D5435 hardware. The results show that the stability control system functions appropriately using this control strategy and effectively improves the stability of the vehicle.


Sign in / Sign up

Export Citation Format

Share Document