scholarly journals Sum Rate Analysis of MU-MIMO with a 3D MIMO Base Station Exploiting Elevation Features

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingwang Li ◽  
Lihua Li ◽  
Fupeng Wen ◽  
Junfeng Wang ◽  
Chao Deng

Although the three-dimensional (3D) channel model considering the elevation factor has been used to analyze the performance of multiuser multiple-input multiple-output (MU-MIMO) systems, less attention is paid to the effect of the elevation variation. In this paper, we elaborate the sum rate of MU-MIMO systems with a 3D base station (BS) exploiting different elevations. To illustrate clearly, we consider a high-rise building scenario. Due to the floor height, each floor corresponds to an elevation. Therefore, we can analyze the sum rate performance for each floor and discuss its effect on the performance of the whole building. This work can be seen as the first attempt to analyze the sum rate performance for high-rise buildings in modern city and used as a reference for infrastructure.

Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 573 ◽  
Author(s):  
Menghan Wang ◽  
Dongming Wang

This paper presents some exact results on the sum-rate of multi-user multiple-input multiple-output (MU-MIMO) systems subject to multi-cell pilot contamination under correlated Rayleigh fading. With multi-cell multi-user channel estimator, we give the lower bound of the sum-rate. We derive the moment generating function (MGF) of the sum-rate and then obtain the closed-form approximations of the mean and variance of the sum-rate. Then, with Gaussian approximation, we study the outage performance of the sum-rate. Furthermore, considering the number of antennas at base station becomes infinite, we investigate the asymptotic performance of the sum-rate. Theoretical results show that compared to MU-MIMO system with perfect channel estimation and no pilot contamination, the variance of the sum-rate of the considered system decreases very quickly as the number of antennas increases.


Author(s):  
Hong Son Vu ◽  
Kien Truong ◽  
Minh Thuy Le

<p>Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced.</p>


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 164 ◽  
Author(s):  
Zahra Mokhtari ◽  
Maryam Sabbaghian ◽  
Rui Dinis

Massive multiple input multiple output (MIMO) technology is one of the promising technologies for fifth generation (5G) cellular communications. In this technology, each cell has a base station (BS) with a large number of antennas, allowing the simultaneous use of the same resources (e.g., frequency and/or time slots) by multiple users of a cell. Therefore, massive MIMO systems can bring very high spectral and power efficiencies. However, this technology faces some important issues that need to be addressed. One of these issues is the performance degradation due to hardware impairments, since low-cost RF chains need to be employed. Another issue is the channel estimation and channel aging effects, especially in fast mobility environments. In this paper we will perform a comprehensive study on these two issues considering two of the most promising candidate waveforms for massive MIMO systems: Orthogonal frequency division multiplexing (OFDM) and single-carrier frequency domain processing (SC-FDP). The studies and the results show that hardware impairments and inaccurate channel knowledge can degrade the performance of massive MIMO systems extensively. However, using suitable low complex estimation and compensation techniques and also selecting a suitable waveform can reduce these effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Canyun Xiong ◽  
Shiyong Chen ◽  
Liang Li ◽  
Yucheng Wu

A massive multiple-input multiple-output (MIMO) system uses a large number of antennas in the base station (BS) to serve multiple users, which significantly improves the capacity of the system. However, in time division duplex (TDD) mode, the pilot contamination (PC) is inevitable due to the multiplexing of pilots. This paper proposed a pilot assignment based on graph coloring and location information (GC-LI) to improve the performance of users. Specifically, based on graph coloring, the proposed GC-LI algorithm combines location information like the angle of arrival (AoA), distance, and correlation to construct an interference graph. Then, we calculate the interference between any two users and use the postprocessing discrete Fourier transform (DFT) filtering process to effectively distinguish the users with nonoverlapping AoAs. Finally, according to the interference graph, the GC-LI algorithm is proposed to mitigate the intercell interference (ICI) between users with the same pilot by assigning different pilots to connected users with high ICI metrics based on some regulation. Simulation results show that the GC-LI algorithm is suitable for various types of cells. In addition, compared with the existing pilot assignment algorithms based on graph coloring, users’ average signal-to-interference-plus-noise ratio (SINR) and uplink achievable sum rate (ASR) are significantly improved.


Author(s):  
Naraiah R , Et. al.

Wireless communications has gotten one of the quickest developing zones in our advanced life and makes colossal effect on practically every component of our day by day life. 5G should support a large number of new applications with a wide assortment of prerequisites, including higher pinnacle and client information rates, diminished dormancy, improved indoor inclusion, expanded number of gadgets, etc. The normal traffic development in at least a long time from now can be fulfilled by the consolidated utilization of more range, higher spectral efficiency, and densification of cells. The increment in spectral effectiveness will improve the throughput of the system which straightforwardly serves the Enhanced Mobile Broad band use instance of the 5G assistance. In massive Multiple-Input Multiple-Output (M-MIMO) systems few hundred quantities of antennas are conveyed at each base station (BS) to serve a moderately modest number of single-reception apparatus terminals with multiuser, giving higher information rate and lower idleness. Massive Multiple-Input Multiple-Output is the arising innovation in cell system for higher information rate correspondence. It utilizes enormous number of communicating reception apparatus at the base station which is made conceivable by the radio wire cluster which can be electronically steerable and adequately utilized for shaft framing. Spectral proficiency is the vital boundary to be improved in expanding throughput. The system execution under different commonsense limitations and conditions, for example, restricted soundness block length, number of base station (BS) antennas, and number of dynamic clients are assessed through simulation.  


2015 ◽  
Vol 18 (3) ◽  
pp. 92-101
Author(s):  
Kha Hoang Ha ◽  
Long Dinh Nguyen ◽  
Tuan Hong Do

This paper is concerned with the joint linear precoder design problem for the multiuser multiple-input multiple-output (MIMO) heterogeneous networks (HetNets) in which multiple femto base stations (FBSs) coexist with a macro base station (MBS). To tackle the inter-user interference in the macrocell, we exploit the blockdiagonalization scheme and then use the convex optimization to maximize the sum rate of the macrocell. The FBS transmission strategy is to maximize the sum-rate of femtocells subject to the transmitted power constraints per FBS and restrictions on the cross-tier interference to macro-users (MUs). Such a design problem is typically nonconvex, and, thus, challenging to find the FBS precoders. We reformulate the design problem of the FBS precoders as a d.c. (difference of convex functions) programming, and develop an efficient iterative algorithm to obtain the optimal precoders. Numerical simulation results show that the proposed algorithm outperforms the other methods in terms of the total sum-rate of the HetNet.


Author(s):  
Junsik Shin ◽  
Junyeub Suh ◽  
Sangchun Park ◽  
Wonjin Sung

AbstractIn order to improve the quality of the received signal and system spectral efficiency, accurate beamforming using a given antenna array is essential for multiple-input multiple-output (MIMO) systems. To obtain desired MIMO transmission performance, construction of codebooks which are composed of matching beamforming vectors to the array structure is important. To effectively cover different types of mobile traffic, the base station for 5G new radio employs antenna arrays in various sizes and shapes. Nevertheless, the codebooks adopted by the 3GPP standard so far are based on the uniform linear array and the uniform planar array, necessitating design techniques for a wider class of antenna arrays. In this paper, we propose codebook construction methods for the uniform circular array with parameters to flexibly set the initial phase and step size based on the channel characteristics of the user equipment (UE). When tested over the 3GPP spatial channel model, the proposed codebooks show a substantial amount of gain over the conventional codebooks in all UE locations within the cell.


2020 ◽  
Vol 37 (6) ◽  
pp. 1061-1074
Author(s):  
Lokesh Bhardwaj ◽  
Ritesh Kumar Mishra

The effects of pilot contamination (PC) on the performance of multi-cell multi-user massive multiple input multiple output (MC-MU-m-MIMO) system in uplink has been analyzed in this article. In a multi-cell scenario, the channel estimation (CE) at the desired cell using pilot reuse to avoid significant overhead results in poor CE due to PC. The improvement in degraded performance due to the effect of PC has been shown using low Density Parity Check (LDPC) codes. The comparative analysis of performance in terms of variation in bit error rate (BER) with the signal to noise ratio (SNR) for LDPC coded and uncoded information blocks of users has been shown when the number of cells sharing the same frequency band is varied. Further, the expression for sum-rate has been derived and its variation with the number of base station (BS) antennas has also been shown. The simulated results have shown that the LDPC coded scheme performs better than the uncoded counterpart and the sum-rate capacity increases when the strength of channel coefficients between the BS antennas of the desired cell and the users of remaining cells is less.


Author(s):  
Muhsin Muhsin ◽  
Afina Lina Nurlaili ◽  
Aulia Saharani ◽  
Indah Rahmawti Utami

<span>Massive internet of things (IoT) in 5G has many advantages as a future technology. It brings some challenges such as a lot of devices need massive connection. In this case, multiple-input multiple-output (MIMO) systems offer high performance and capacity of communications. There is a challenge of correlation between antennas in MIMO. This paper proposes three-sectors MIMO base station antenna for 5G-New Radio (5G-NR) band N77 with dual polarized configuration to reduce the correlation. The proposed antenna has a maximum coupling of -16.90 dB and correlation below 0.01. The obtained bit error rate (BER) performance is very close to non-correlated antennas with bandwidth of 1.87 GHz. It means that the proposed antenna has been well designed.</span>


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


Sign in / Sign up

Export Citation Format

Share Document