scholarly journals Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sung Eun Kim ◽  
Young-Pil Yun ◽  
Deok-Won Lee ◽  
Eun Young Kang ◽  
Won Jae Jeong ◽  
...  

Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Anin vitrorelease study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days.In vitroresults revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation.

2015 ◽  
Vol 23 (1) ◽  
pp. 1-14
Author(s):  
Sudirman Sahid ◽  
◽  
Nor Shahida Kader Bashah ◽  
Salina Sabudin ◽  
◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Ioana-Codruţa Mirică ◽  
Gabriel Furtos ◽  
Ondine Lucaciu ◽  
Petru Pascuta ◽  
Mihaela Vlassa ◽  
...  

The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young’s modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.


2006 ◽  
Vol 69 (12) ◽  
pp. 976-982 ◽  
Author(s):  
Nenad Ignjatović ◽  
Petar Ninkov ◽  
Vesna Kojić ◽  
Miloš Bokurov ◽  
Vladimir Srdić ◽  
...  

2017 ◽  
Vol 3 (4) ◽  
pp. 045004
Author(s):  
Elmira Pourreza ◽  
Ammar Z Alshemary ◽  
Bengi Yilmaz ◽  
Reza Moonesi Rad ◽  
Aysen Tezcaner ◽  
...  

Author(s):  
X Li ◽  
D Li ◽  
B Lu ◽  
L Wang ◽  
Z Wang

The ability to have precise control over internal channel architecture, porosity, and external shape is essential for tissue engineering. The feasibility of using indirect stereo-lithography (SL) to produce scaffolds from calcium phosphate cement materials for bone tissue engineering has been investigated. The internal channel architecture of the scaffolds was created by removal of the negative resin moulds made with SL. Scanning electron microscopy (SEM) showed highly open, well-interconnected channel architecture. The X-ray diffraction examination revealed that the hydroxyapatite phase formed at room temperature in the cement was basically stable up to 850 °C. There was no phase decomposition of hydroxyapatite, although the crystallinity and grain size were different. The ability of resulting structure to support osteoblastic cells culture was tested in vitro. Cells were evenly distributed on exterior surfaces and grew into the internal channels of scaffolds. To exploit the ability of this technique, anatomically shaped femoral supracondylar scaffolds with 300-800 μm interconnected channels were produced and characterized.


2009 ◽  
Vol 610-613 ◽  
pp. 1391-1394
Author(s):  
Hua De Zheng ◽  
Ying Jun Wang ◽  
Qiang Ma ◽  
Cheng Yun Ning ◽  
Xiao Feng Chen

In the present study, an Intelligent Multi-parameter Simulated Evaluation in vitro (IMSE system) was used to study the deposition properties of apatite formation on the surface of biphasic calcium phosphate porous ceramic (BCP) from static and dynamic r-SBF. Results showed that apatite formed on the surface of BCP from static and dynamic r-SBF differed between each other. In static r-SBF, ions were transferred by diffusion, which could not compensate the consuming of calcium ions, and mist apatite layer was formed on the surface of samples. But in the dynamic r-SBF, simulated fluid was adjusted precisely and flowed forcedly, the concentrations of ions were homogeneous; with the compensation of ions, calcium and phosphate were supersaturated, and the free energy of apatite formation was negative, bone-like apatite sheets were formed on the surface of samples.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 992
Author(s):  
Song Chen ◽  
Yuanli He ◽  
Linna Zhong ◽  
Wenjia Xie ◽  
Yiyuan Xue ◽  
...  

The surface modification of titanium (Ti) can enhance the osseointegration and antibacterial properties of implants. In this study, we modified porous Ti discs with calcium phosphate (CaP) and different concentrations of Lactoferrin (LF) by biomimetic mineralization and examined their antibacterial effects and osteogenic bioactivity. Firstly, scanning electron microscopy (SEM), the fluorescent tracing method, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and the releasing kinetics of LF were utilized to characterize the modified Ti surface. Then, the antibacterial properties against S. sanguis and S. aureus were investigated. Finally, in vitro cytological examination was performed, including evaluations of cell adhesion, cell differentiation, extracellular matrix mineralization, and cytotoxicity. The results showed that the porous Ti discs were successfully modified with CaP and LF, and that the LF-M group (200 μg/mL LF in simulated body fluid) could mildly release LF under control. Further, the LF-M group could effectively inhibit the adhesion and proliferation of S. sanguis and S. aureus and enhance the osteogenic differentiation in vitro with a good biocompatibility. Consequently, LF-M-modified Ti may have potential applications in the field of dental implants to promote osseointegration and prevent the occurrence of peri-implantitis.


1996 ◽  
Vol 270 (4) ◽  
pp. F604-F613 ◽  
Author(s):  
J. R. Asplin ◽  
N. S. Mandel ◽  
F. L. Coe

We have used published rat micropuncture data to construct a matrix of ion concentrations along the rat nephron. With an iterative computer model of known ion interactions, we calculated relative supersaturation ratios in all nephron segments. The collecting ducts and urine showed expected supersaturation with stone-forming salts. Fluid in the thin segment of the loop of Henle may be supersaturated with calcium carbonate and calcium phosphate under certain conditions. Because calculations cannot predict the actual course of crystallization, we made solutions to mimic, in vitro, presumed conditions in the loop of Henle. The solid phases that formed were analyzed by X-ray powder diffraction, electron microprobe, and infrared spectroscopy. All samples were identified as poorly crystallized or immature apatite. The descending limb of Henle's loop creates a unique condition as it extracts water but not sodium, bicarbonate, calcium, or phosphate, giving a calcium concentration at the bend of 3 mM, pH 7.4, and a phosphate concentration that varies from 0.8 to 48 mM, depending on parathyroid hormone and dietary phosphate. We conclude that conditions in the thin segment potentially could create a solid calcium phosphate phase, which may initiate nucleation of calcium oxalate salts in the collecting ducts, potentiating nephrolithiasis and nephrocalcinosis.


Sign in / Sign up

Export Citation Format

Share Document