scholarly journals Research on Adaptive Dual-Mode Switch Control Strategy for Vehicle Maglev Flywheel Battery

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Hui Gao ◽  
Ying-Jun Wu ◽  
Jing-Jin Shen

Because of the jamming signal is real-time changeable and control algorithm cannot timely tracking control flywheel rotor, this paper takes vehicle maglev flywheel battery as the research object. One kind of dual-model control strategy is developed based on the analysis of the vibration response impact of the flywheel battery control system. In view of the complex foundation vibration problems of electric vehicles, the nonlinear dynamic simulation model of vehicle maglev flywheel battery is solved. Through analyzing the nonlinear vibration response characteristics, one kind of dual-mode adaptive hybrid control strategy based onH∞control and unbalance displacement feed-forward compensation control is presented and a real-time switch controller is designed. The reliable hybrid control is implemented, and the stability in the process of real-time switch is solved. The results of this project can provide important basic theory support for the research of vehicle maglev flywheel battery control system.

2020 ◽  
Vol 10 (11) ◽  
pp. 4037 ◽  
Author(s):  
Okpin Na ◽  
Jejin Park

Real-time hybrid method is an economical and efficient test method to evaluate the dynamic behavior. The purpose of this study is to develop the computational algorithm and to prove the reliability of a real-time hybrid control system. For performing the multi-direction dynamic test, three dynamic actuators and the optimized real-time hybrid system with new hybrid simulation program (FEAPH) and a simplified inter-communication were optimized. To verify the reliability and applicability of the real-time hybrid control system, 3-DOF (3 Degrees of Freedom) non-linear dynamic tests with physical model were conducted on a steel and concrete frame structure. As a ground acceleration, El Centro and Northridge earthquake waves were applied. As a result, the maximum error of numerical analysis is 13% compared with the result of shaking table test. However, the result of real-time hybrid test shows good agreement with the shaking table test. The real-time hybrid test using FEAPH can make good progress on the total testing time and errors. Therefore, this test method using FEAPH can be effectively and cheaply used to evaluate the dynamic performance of the full-scale structure, instead of shaking table and full-scale test.


2013 ◽  
Vol 860-863 ◽  
pp. 1069-1072
Author(s):  
Rong Chun Sun ◽  
Yan Xin Yu

To realize the online error analysis and verification of control strategy, it is necessary to simulate the states of the motion mechanism, and accurately to obtain the motion relationship between multi-axis and between motors. So a test and simulation system of multi-axis controller was designed. The system consists of a unit of real-time acquisition and analysis, a simulation unit of motor loads, a motherboard and a computer. Motor driving signals for multi channels are synchronously sampled and analyzed by the unit of acquisition and analysis. Motherboard is used to link the various parts. The working states of motor divers under loads are simulated by simulating the motor loads. In the industrial computer, the control effects of multi-axis control system are displayed by 3D simulation. Test results show that the system is stable and reliable, and has a certain application value.


2021 ◽  
pp. 107754632110459
Author(s):  
Yuxue Pu ◽  
Xiaobao Li ◽  
Fang Zhang

To suppress the nonlinear vibration of the flexible manipulator during motion, this article presents a hybrid control strategy based on a servo motor and a piezoelectric actuator. The dynamic model of the piezoelectric flexible manipulator is established first. To realize the trajectory tracking, a proportional derivative control method is used to schedule the control torque. Because the Volterra filter can approximate the nonlinear system model, a Volterra filtered-xLMS algorithm based on a second-order Volterra filter structure is proposed, by which the active nonlinear vibration control of flexible link is realized. Simulation results show that the proposed Volterra filtered-xLMS algorithm can not only make use of the advantages of the classical filtered-xLMS algorithm but also solve the problem of effective modeling of nonlinear secondary path. The proposed hybrid control strategy based on Volterra filtered-xLMS algorithm and proportional derivative control algorithm can improve the position accuracy of joint and effectively suppress the vibration response of the nonlinear flexible link. A piezoelectric flexible manipulator with PZT (lead zirconate titanate) sensor and actuator is designed to demonstrate the validity and efficiency of the proposed method by experiments. Experiment results demonstrate that the attenuation time of vibration response is reduced from 5 s to 1.5 s, the vibration response at the first-order frequency is reduced by 60%, and the proposed methodology has an important advantage in application of active vibration control of piezoelectric flexible manipulator.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 418-431 ◽  
Author(s):  
Liu Jun ◽  
Xie Shouyong ◽  
Chen Chong ◽  
Xie Dan ◽  
Yang Mingjin

Fuzzy control, an intelligent control method, is generally employed to deal with complex nonlinear controlled objects that cannot be expressed by accurate mathematical model. Memristor, whose unique advantages are automatic successive memory and nonvolatility, brought new opportunity for solving the key question of fuzzy control. With the design idea of software harden, this paper first constructed membership function in the fuzzy controller based on the unique feature of crossbar array of the spintronic memristor and elaborated the whole construction process. After that, this paper simulated the construction process with MATLAB simulation software, verifying its reasonability and feasibility. Furthermore, a typical fuzzy control water tank system was chosen to explore and discuss the flexibility of spintronic memristor crossbar array in the real-time control system, and the proposed control strategy and the typical fuzzy control strategy were compared. The results revealed that the proposed control strategy was able to attain the effectiveness of the typical fuzzy control system in the real-time control system. This sets light to future research on the implementation of memristor crossbar array in the real-time control system and also promotes the application of fuzzy controller design idea. The problems needed to be solved when implementing memristor crossbar array in the real-time control system were discussed in the final section.


2013 ◽  
Vol 675 ◽  
pp. 67-71
Author(s):  
Yan Xiang Wu ◽  
Li Zhang ◽  
Chao Jun Zhang ◽  
Chao Qun Zhou

This article designs and realizes a variable-frequency feeding system for quantitative packaging based on PLC. By analyzing diversified factors that affect precision and speed in weighing process, this paper puts forward a hybrid control strategy which combined fuzzy control and traditional PID control. The proposed control system meets the control requirements of high precision in weighing and improves production efficiency. The practical results show that the system possesses a desirable application value in the modern industrial manufacturing.


2017 ◽  
Vol 13 (05) ◽  
pp. 97
Author(s):  
Wenfang Zheng ◽  
Jincui Liu

The purpose of this study is to solve defects of the existing control strategy long convergence time, sliding mode chattering and so on. For Sensorless Brushless DC motor control strategy, a modified extended Kalman state correction estimation scheme is proposed, and dual mode high-order non-singular terminal hybrid sliding mode control technology is put forward. TMS320F2812DSP core controller and CM200DY-12H inverter module and construction electric car core control module are established, and the program algorithm of the extended Kalman algorithm and hybrid sliding mode control is constructed. The results showed that the control system designed can suppress the system chattering, and the system has strong robustness, which has low requirement on the system model and can eliminate external disturbance input, showing outstanding performance in the convergence time and anti disturbance performance. In summary, a dual mode high-order non-singular terminal hybrid sliding mode control technology put forward is quite suitable for electric vehicle control system.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Shousong Han ◽  
Zhiqiang Chao ◽  
Xiangbo Liu

The riding conditions for a high-speed tracked vehicle are quite complex. To enhance the adaptability of suspension systems to different riding conditions, a semiactive and self-adaptive hybrid control strategy based on disturbance velocity and frequency identification was proposed. A mathematical model of the semiactive, self-adaptive hybrid suspension control system, along with a performance evaluation function, was established. Based on a two-degree-of-freedom (DOF) suspension system, the kinematic relations and frequency zero-crossing detection method were defined, and expressions for the disturbance velocity and disturbance frequency of the road were obtained. Optimal scheduling of the semiactive hybrid damping control gain (csky, cground, chybrid) and self-adaptive control gain (cv) under different disturbances were realized by exploiting the particle swarm multiobjective optimization algorithm. An experimental study using a carefully designed test rig was performed under a number of typical riding conditions of tracked vehicles, and the results showed that the proposed control strategy is capable of accurately recognizing different disturbances, shifting between control modes (semiactive/self-adaptive), and scheduling the damping control gain according to the disturbance identification outcomes; hence, the proposed strategy could achieve a good trade-off between ride comfort and ride safety and efficiently increase the overall performance of the suspension under various riding conditions.


Sign in / Sign up

Export Citation Format

Share Document