scholarly journals IL-34 SuppressesCandida albicansInduced TNFαProduction in M1 Macrophages by Downregulating Expression of Dectin-1 and TLR2

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Rong Xu ◽  
Hong-Fan Sun ◽  
David W. Williams ◽  
Adam V. Jones ◽  
Ali Al-Hussaini ◽  
...  

Candida albicansis a fungus that is an opportunistic pathogen of humans. Normally,C. albicansexists as a harmless commensal and does not trigger inflammatory responses by resident macrophages in skin mucosa, which may be caused by a tolerance of skin macrophage toC. albicans. IL-34 is a recently discovered cytokine, constitutively expressed by keratinocytes in the skin. IL-34 binds to the receptor of M-CSF, thereby stimulating tissue macrophage maturation and differentiation. Resident macrophages exhibit phenotypic plasticity and may transform into inflammatory M1 macrophages for immunity or anti-inflammatory M2 macrophages for tissue repair. M1 macrophages produce higher levels of inflammatory cytokines such as TNFαin response toC. albicansstimulation. In this study, it was demonstrated that IL-34 attenuated TNFαproduction by M1 macrophages challenged with heat killed Candida (HKC). The molecular mechanism of IL-34 mediated suppression of HKC induced TNFαproduction by M1 macrophages was by the inhibition of M1 macrophage expression of keyC. albicanspattern recognition receptors (PPRs), namely, Toll-like receptor (TLR) 2 and Dectin-1. The results of this study indicated that constitutive IL-34 expressed by skin keratinocytes might suppress resident macrophage responses toC. albicanscolonisation by maintaining low levels TLR2 and Dectin-1 expression by macrophages.

2006 ◽  
Vol 74 (3) ◽  
pp. 1828-1836 ◽  
Author(s):  
Shayla West-Barnette ◽  
Andrea Rockel ◽  
W. Edward Swords

ABSTRACT Nontypeable Haemophilus influenzae (NTHI) is a common respiratory commensal and opportunistic pathogen. NTHI is normally contained within the airways by host innate defenses that include recognition of bacterial endotoxins by Toll-like receptor 4 (TLR4). NTHI produces lipooligosaccharide (LOS) endotoxins which lack polymeric O side chains and which may contain host glycolipids. We recently showed that NTHI biofilms contain variants with sialylated LOS glycoforms that are essential to biofilm formation. In this study, we show that NTHI forms biofilms on epithelial cell layers. Confocal analysis revealed that sialylated variants were distributed throughout the biofilm, while variants expressing phosphorylcholine (PCho) were found within the biofilm. Consistent with this observation, PCho content of LOS purified from NTHI biofilms was increased compared to LOS from planktonic cultures. Hypothesizing that the observed changes in endotoxin composition could affect bioactivity, we compared inflammatory responses to NTHI LOS purified from biofilm and planktonic cultures. Our results show that endotoxins from biofilms induced weaker host innate responses. While we observed a minimal effect of sialylation on LOS bioactivity, there was a significant decrease in bioactivity associated with PCho substitutions. We thus conclude that biofilm growth increases the proportion of PCho+ variants in an NTHI population, resulting in a net decrease in LOS bioactivity. Thus, in addition to their well-documented resistance phenotypes, our data show that biofilm communities of NTHI bacteria contain variants that evoke less potent host responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Wang ◽  
Xueyue Zheng ◽  
Bingnan Liu ◽  
Yaoyao Xia ◽  
Zhongquan Xin ◽  
...  

Increasing evidence support that cellular amino acid metabolism shapes the fate of immune cells; however, whether aspartate metabolism dictates macrophage function is still enigmatic. Here, we found that the metabolites in aspartate metabolism are depleted in lipopolysaccharide (LPS) plus interferon gamma (IFN-γ)-stimulated macrophages. Aspartate promotes interleukin-1β (IL-1β) secretion in M1 macrophages. Mechanistically, aspartate boosts the activation of hypoxia-inducible factor-1α (HIF-1α) and inflammasome and increases the levels of metabolites in aspartate metabolism, such as asparagine. Interestingly, asparagine also accelerates the activation of cellular signaling pathways and promotes the production of inflammatory cytokines from macrophages. Moreover, aspartate supplementation augments the macrophage-mediated inflammatory responses in mice and piglets. These results uncover a previously uncharacterized role for aspartate metabolism in directing M1 macrophage polarization.


2018 ◽  
Vol 315 (1) ◽  
pp. C62-C72 ◽  
Author(s):  
Spring Davis ◽  
Aiko M. Cirone ◽  
Janet Menzie ◽  
Floyd Russell ◽  
C. Kathleen Dorey ◽  
...  

Chitin particles have been used to understand host response to chitin-containing pathogens and allergens and are known to induce a wide range of polarized macrophage activations, depending, at least in part, on particle size. Nonphagocytosable particles larger than a macrophage induce tissue repair M2 activation. In contrast, phagocytosable chitin microparticles (CMPs, 1–10 μm diameters) induce M1 macrophages that kill intracellular microbes and damage tissues. However, chitosan (deacetylated) microparticles (de-CMPs, 1–10 µm) induce poor M1 activation. Toll-like receptor 2 (TLR2) and associated coreceptors in macrophages appear to be required for the M1 activation. To understand the exact mechanism of phagocytosis-mediated M1 activation by chitin, we isolated macrophage proteins that bind to CMPs during early phagocytosis and determined that TLR1, TLR2, CD14, late endosomal/lysosomal adaptor MAPK and mechanistic target of rapamycin activator 1 (LAMTOR1), Lck/Yes novel tyrosine kinase (Lyn), and β-actin formed phagosomal CMP-TLR2 clusters. These proteins were also detected in TLR2 phagosomal clusters in macrophages phagocytosing de-CMPs, but at relatively lower levels than in the CMP-TLR2 clusters. Importantly, CMP-TLR2 clusters further recruited myeloid differentiation primary response gene 88 (MyD88) and Toll-IL-1 receptor-containing adaptor protein (TIRAP) and phosphorylated Lyn, whereas neither the adaptors nor phosphorylated Lyn was detected in the de-CMP clusters. The results indicate that the acetyl group played an obligatory, phagocytosis-dependent role in the initiation of an integrated signal for TLR2-mediated M1 activation.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Pablo Nakagawa ◽  
Ginette Bordcoch de Martino ◽  
Martin D’Ambrosio ◽  
Xu Jiang ◽  
Oscar Carretero

Background: The natural peptide N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) decreases inflammation in chronic diseases such as hypertension and heart failure. The effects of Ac-SDKP on acute inflammatory responses during myocardial infarction (MI) are unknown. During the first 72 hours post-MI, neutrophils, M1 macrophages (pro-inflammatory), and M2 macrophages (pro-resolution) and the release of myeloperoxidase (MPO) and matrix metalloproteinases (MMP) play a role in the development of cardiac rupture which is an uncommon, but fatal complication. We hypothesize that in the acute stage of MI, Ac-SDKP decreases the incidence of cardiac rupture and mortality by preventing the infiltration of immune cells and by decreasing the activation of MPO and MMP. Methods: MI was induced by the ligation of the left descending coronary artery in C57 mice. Vehicle or Ac-SDKP (1.6 mg/kg/d) was infused via osmotic minipump. Cardiac immune cell infiltration was assessed by flow cytometry, cardiac MPO and MMP activities were measured at 24-48 hrs post-MI. The incidence of cardiac rupture and mortality was determined at 7 days post-MI. Neutrophil migration was studied in vitro by chemotaxis transwell assay. Results: In infarcted mice, Ac-SDKP decreased the incidence of cardiac rupture from 51.0% (26 of 51 animals) to 27.3% (12/44; p=0.015) and mortality from 56.9% (29/51) to 31.8% (14/44; p=0.019). Ac-SDKP also reduced the cardiac infiltration by the M1 macrophages (veh: 1,495±236 vs Ac-SKDP: 765±69 cells/heart, p=0.027), without affecting M2 macrophages. Ac-SDKP did not affect neutrophil and MPO activity in vivo and neither affected neutrophil chemotaxis in vitro . However, Ac-SDKP prevented the activation of MMP-9 (veh: 3,686±508 vs Ac-SDKP: 1,696±512 optical density units, p=0.029) in infarcted hearts. Conclusion: Ac-SDKP prevents cardiac rupture and mortality in acute MI. These protective effects of Ac-SDKP are associated with a decrease in pro-inflammatory M1 macrophage infiltration and MMP-9 activation. Perspective: Cardiac rupture is an uncommon, but fatal complication of MI that could be prevented by the administration of Ac-SDKP or a peptidase resistant analog.


2021 ◽  
Author(s):  
Erin M O'Brien ◽  
Kara L Spiller

Tissue repair is largely regulated by diverse macrophage populations whose functions are timing- and context-dependent. The early phase of healing is dominated by pro-inflammatory macrophages, also known as M1, followed by the emergence of a distinct and diverse population that is collectively referred to as M2. The extent of the diversity of the M2 population is unknown. M2 macrophages may originate directly from circulating monocytes or from phenotypic switching of pre-existing M1 macrophages within the site of injury. The differences between these groups have not been investigated, but have major implications for understanding and treating pathologies characterized by deficient M2 activation, such as chronic wounds, which also exhibit diminished M1 macrophage behavior. This study investigated the influence of prior M1 activation on human macrophage polarization to an M2 phenotype in response to IL-4 treatment in vitro. Compared to unactivated (M0) macrophages, M1 macrophages upregulated several receptors that promote the M2 phenotype, including the primary receptor for IL-4. M1 activation also changed the macrophage response to treatment with IL-4, generating an M2-like phenotype with a distinct gene and protein expression signature compared to M2 macrophages prepared directly from M0 macrophages. Functionally, compared to M0-derived M2 macrophages, M1-derived M2 macrophages demonstrated increased migratory response to SDF-1α, and conditioned media from these macrophages promoted increased recruitment of endothelial cells in transwell assays. Together, these findings indicate the importance of prior M1 activation in regulating subsequent M2 behavior, and suggest that augmentation of M1 behavior may be a therapeutic target in dysfunctional tissue repair.


Author(s):  
С.В. Калиш ◽  
С.В. Лямина ◽  
А.А. Раецкая ◽  
И.Ю. Малышев

Цель исследования. Репрограммирование М1 фенотипа макрофагов с ингибированными факторами транскрипции М2 фенотипа STAT3, STAТ6 и SMAD и оценка их влияния на развитие карциномы Эрлиха (КЭ) in vitro и in vivo. Методика. Рост опухоли иницировали in vitro путем добавления клеток КЭ в среду культивирования RPMI-1640 и in vivo путем внутрибрюшинной инъекции клеток КЭ мышам. Результаты. Установлено, что M1макрофаги и in vitro, и in vivo оказывают выраженный противоопухолевый эффект, который превосходит антиопухолевые эффекты М1, M1, M1 макрофагов и цисплатина. Заключение. М1 макрофаги с ингибированными STAT3, STAT6 и/или SMAD3 эффективно ограничивают рост опухоли. Полученные данные обосновывают разработку новой технологии противоопухолевой клеточной терапии. Objective. Reprogramming of M1 macrophage phenotype with inhibited M2 phenotype transcription factors, such as STAT3, STAT6 and SMAD and assess their impact on the development of Ehrlich carcinoma (EC) in vitro and in vivo . Methods. Tumor growth in vitro was initiated by addition of EC cells in RPMI-1640 culture medium and in vivo by intraperitoneal of EC cell injection into mice. Results. It was found that M1 macrophages have a pronounced anti-tumor effect in vitro , and in vivo , which was greater than anti-tumor effects of M1, M1, M1 macrophages and cisplatin. Conclusion. M1 macrophages with inhibited STAT3, STAT6 and/or SMAD3 effectively restrict tumor growth. The findings justify the development of new anti-tumor cell therapy technology.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lu Wang ◽  
Yafei Rao ◽  
Xiali Liu ◽  
Liya Sun ◽  
Jiameng Gong ◽  
...  

Abstract Background Uncontrolled inflammation is a central problem for many respiratory diseases. The development of potent, targeted anti-inflammatory therapies to reduce lung inflammation and re-establish the homeostasis in the respiratory tract is still a challenge. Previously, we developed a unique anti-inflammatory nanodrug, P12 (made of hexapeptides and gold nanoparticles), which can attenuate Toll-like receptor-mediated inflammatory responses in macrophages. However, the effect of the administration route on its therapeutic efficacy and tissue distribution remained to be defined. Results In this study, we systematically compared the effects of three different administration routes [the intratracheal (i.t.), intravenous (i.v.) and intraperitoneal (i.p.)] on the therapeutic activity, biodistribution and pulmonary cell targeting features of P12. Using the LPS-induced ALI mouse model, we found that the local administration route via i.t. instillation was superior in reducing lung inflammation than the other two routes even treated with a lower concentration of P12. Further studies on nanoparticle biodistribution showed that the i.t. administration led to more accumulation of P12 in the lungs but less in the liver and other organs; however, the i.v. and i.p. administration resulted in more nanoparticle accumulation in the liver and lymph nodes, respectively, but less in the lungs. Such a lung favorable distribution was also determined by the unique surface chemistry of P12. Furthermore, the inflammatory condition in the lung could decrease the accumulation of nanoparticles in the lung and liver, while increasing their distribution in the spleen and heart. Interestingly, the i.t. administration route helped the nanoparticles specifically target the lung macrophages, whereas the other two administration routes did not. Conclusion The i.t. administration is better for treating ALI using nanodevices as it enhances the bioavailability and efficacy of the nanodrugs in the target cells of the lung and reduces the potential systematic side effects.


2021 ◽  
Vol 22 (13) ◽  
pp. 7010
Author(s):  
Shicheng Wang ◽  
Man Cheng ◽  
Peng Peng ◽  
Yue Lou ◽  
Aili Zhang ◽  
...  

Macrophages play critical roles in both innate and adaptive immunity and are known for their high plasticity in response to various external signals. Macrophages are involved in regulating systematic iron homeostasis and they sequester iron by phagocytotic activity, which triggers M1 macrophage polarization and typically exerts antitumor effects. We previously developed a novel cryo-thermal therapy that can induce the mass release of tumor antigens and damage-associated molecular patterns (DAMPs), promoting M1 macrophage polarization. However, that study did not examine whether iron released after cryo-thermal therapy induced M1 macrophage polarization; this question still needed to be addressed. We hypothesized that cryo-thermal therapy would cause the release of a large quantity of iron to augment M1 macrophage polarization due to the disruption of tumor cells and blood vessels, which would further enhance antitumor immunity. In this study, we investigated iron released in primary tumors, the level of iron in splenic macrophages after cryo-thermal therapy and the effect of iron on macrophage polarization and CD4+ T cell differentiation in metastatic 4T1 murine mammary carcinoma. We found that a large amount of iron was released after cryo-thermal therapy and could be taken up by splenic macrophages, which further promoted M1 macrophage polarization by inhibiting ERK phosphorylation. Moreover, iron promoted DC maturation, which was possibly mediated by iron-induced M1 macrophages. In addition, iron-induced M1 macrophages and mature DCs promoted the differentiation of CD4+ T cells into the CD4 cytolytic T lymphocytes (CTL) subset and inhibited differentiation into Th2 and Th17 cells. This study explains the role of iron in cryo-thermal therapy-induced antitumor immunity from a new perspective.


Sign in / Sign up

Export Citation Format

Share Document