scholarly journals Orthosis Effects on the Gait of a Child with Infantile Tibia Vara

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Serap Alsancak ◽  
Senem Guner

Infantile tibia vara (ITV) is an acquired form of tibial deformity associated with tibial varus and internal torsion. As there is currently insufficient data available on the effects of orthotics on gait parameters, this study aimed to document the influence of orthosis on walking. A male infant with bilateral tibia vara used orthoses for five months. Gait evaluations were performed pre- and posttreatment for both legs. The kinematic parameters were collected by using a motion analysis system. The orthotic design principle was used to correct the femur and tibia. Posttreatment gait parameters were improved compared to pretreatment parameters. After 5 months, there was remarkable change in the stance-phase degrees of frontal plane hip joint abduction and knee joint varus. We found that orthoses were an effective treatment for the infantile tibia vara gait characteristics in this patient. Full-time use of single, upright knee-ankle-foot orthosis with a drop lock knee joint and application of corrective forces at five points along the full length of the limb were effective.

2015 ◽  
Vol 27 (04) ◽  
pp. 1550036
Author(s):  
Sami Almashaqbeh ◽  
Bahaa Al-Sheikh ◽  
Wan Abu Bakar Wan Abas ◽  
Noor Azuan Abu Osman

The kinematic and kinetic differences between obese and slim people when climbing a staircase at their self-selected speed are compared. A four-step wooden stair instrumented with two force plates were used as the action platform whilst the kinematic and kinetic recordings were collected and analyzed using a six-camera and two-force plate three-dimensional motion analysis system. Ten obese adults, six males and four females, and ten lean adults, six males and four females, volunteered for the study. The results showed that the obese people are able to reduce the knee joint flexion moment when climbing stair compared to the normal slim people. In the frontal plane, no significant differences were found in the knee adduction moment. Moreover, obese individuals have identified some kinematics adaptations including slower velocity and longer stance phase, compared to slim individuals. The obese individuals might adjust their gait characteristics in response to their heavy bodies to reduce or maintain the same load on the knee joint as slim individuals.


2010 ◽  
Vol 34 (3) ◽  
pp. 270-276 ◽  
Author(s):  
Kavi C. Jagadamma ◽  
Elaine Owen ◽  
Fiona J. Coutts ◽  
Janet Herman ◽  
Jacqueline Yirrell ◽  
...  

The effects of tuning the AFO footwear combination (AFOFC) for an adult with post-stroke hemiplegia were investigated. Gait analysis and tuning were carried out using a Vicon 3D motion analysis system and two force plates. Tuning of the AFOFC was accomplished by gradually modifying its design over a number of gait trials, to achieve optimal (i.e., as close as possible to normal, within the capability of the patient) knee kinematics and alignment of the Ground Reaction Force vector (GRF) relative to the knee joint. Heel wedges and a stiff rocker were used to tune mid-stance and terminal stance, respectively. Temporal-spatial parameters and selected kinetic and kinematic variables were compared between the non-tuned AFOFC, the tuned AFOFC immediately after tuning, and the tuned AFOFC after three months. There were several changes after three months compared to the non-tuned AFOFC, including improvement in stride length and a reduction in knee hyperextension. A subjective reduction in knee pain and improvement in function were also reported. The feasibility and the lack of objective evidence of tuning AFOFCs as a part of a clinical service need to be addressed in future research.


2013 ◽  
Vol 29 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Felix Stief ◽  
Harald Böhm ◽  
Katja Michel ◽  
Ansgar Schwirtz ◽  
Leonhard Döderlein

The standard Plug-in-Gait (PiG) protocol used in three-dimensional gait analysis is prone to errors arising from inconsistent anatomical landmark identification and knee axis malalignment. The purpose of this study was to estimate the reliability and accuracy of a custom made lower body protocol (MA) compared with the PiG protocol. Twenty-fve subjects volunteered to evaluate the intertrial reliability. In addition, intersession reliability was examined in 10 participants. An indirect indicator of accuracy according to the knee varus/valgus and flexion/extension range of motion (ROM) was used. Regarding frontal plane knee angles and moments as well as transverse plane motions in the knee and hip joint, the intersession errors were lower for the MA compared with the standard approach. In reference to the knee joint angle cross-talk, the MA produced 4.7° more knee flexion/extension ROM and resulted in 6.5° less knee varus/valgus ROM in the frontal plane. Therefore, the MA tested in this study produced a more accurate and reliable knee joint axis compared with the PiG protocol. These results are especially important for measuring frontal and transverse plane gait parameters.


2013 ◽  
Vol 38 (6) ◽  
pp. 481-491 ◽  
Author(s):  
Cynthia H Fantini Pagani ◽  
Steffen Willwacher ◽  
Rita Benker ◽  
Gert-Peter Brüggemann

Background: Several conservative treatments for medial knee osteoarthritis such as knee orthosis and laterally wedged insoles have been shown to reduce the load in the medial knee compartment. However, those treatments also present limitations such as patient compliance and inconsistent results regarding the treatment success. Objective: To analyze the effect of an ankle–foot orthosis on the knee adduction moment and knee joint alignment in the frontal plane in subjects with knee varus alignment. Study design: Controlled laboratory study, repeated measurements. Methods: In total, 14 healthy subjects with knee varus alignment were analyzed in five different conditions: without orthotic, with laterally wedged insoles, and with an ankle–foot orthosis in three different adjustments. Three-dimensional kinetic and kinematic data were collected during gait analysis. Results: Significant decreases in knee adduction moment, knee lever arm, and joint alignment in the frontal plane were observed with the ankle–foot orthosis in all three different adjustments. No significant differences could be found in any parameter while using the laterally wedged insoles. Conclusion: The ankle–foot orthosis was effective in reducing the knee adduction moment. The decreases in this parameter seem to be achieved by changing the knee joint alignment and thereby reducing the knee lever arm in the frontal plane. Clinical relevance This study presents a novel approach for reducing the load in the medial knee compartment, which could be developed as a new treatment option for patients with medial knee osteoarthritis.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Amir Esrafilian ◽  
Mohammad Taghi Karimi ◽  
Arezoo Eshraghi

Background. Osteoarthritis (OA) is a disease which influences the performance of the knee joint. Moreover, the force and moments applied on the joint increase in contrast to normal subjects. Various types of knee orthoses have been designed to solve the mentioned problems. However, there are other problems in terms of distal migration during walking and the alignment of the orthosis which cannot be changed following the use of brace. Therefore, the main aim of the research was to design an orthosis to solve the aforementioned problems.Method. A new type of knee orthosis was designed with a modular structure. Two patients with knee OA participated in this research project. The force applied on the foot, moment transmitted through the knee joint, and spatiotemporal gait parameters were measured by use of a motion analysis system.Results. The results of the research showed that the adduction moment applied on the knee joint decreased while subjects walked with the new knee orthosis (P-value < 0.05).Conclusion. The new design of the knee brace can be used as an effective treatment to decrease the loads applied on the knee joint and to improve the alignment whilst walking.


2014 ◽  
Vol 14 (02) ◽  
pp. 1450028 ◽  
Author(s):  
MOHAMMAD TAGHI KARIMI ◽  
JAVID MOSTAMAND ◽  
FRANCIS FATOYE

Background: Neuro-musculoskeletal disorders are a major source of physical disability involving more than one joint. Monitoring all joints during walking is achieved by using motion analysis system. There is limited evidence to show the suitability of motion analysis system to monitor neuro-musculoskeletal disorders. This research investigated the feasibility of this system to represent in patients with neuro-musculoskeletal disorders during walking. Method: Five groups of normal subjects with: knee osteoarthritis; avascular necrosis of hip joint; spinal cord injury and flat foot were recruited into this study. Kinetic and kinematic parameters were obtained by the use of motion analysis (Qualysis with seven cameras) and a Kistler force platform. The differences between gait parameters of normal and subjects with these disorders were examined using the independent t-tests. Paired t-test analysis was also used to determine the difference between walking with and without orthosis. Significant value was set at p ≤ 0.05. Results: There was a significant difference between the moment applied on the knee joint, the integral area between center of pressure (COP) and center of knee joint (COJ) graphs of normal and osteoarthritis (OA) subjects (p < 0.05). The area between COP and COJ of the ankle joint significantly differed between normal and flat foot subjects (p < 0.05). However, the force transmitted through the hip joint in subjects with Perthes did not differ significantly while walking with and without orthosis. In paraplegic subjects, the force applied on the limb and the mean values of gait parameters varied while walking with different orthoses which showed the feasibility of the system to monitor the performance of subjects with SCI disorder. Conclusion: The findings of the present study imply that the use of motion analysis is feasibility for assessing and monitoring neuro-musculoskeletal disorders. However, different parameters should be selected for various neuro-musculoskeletal disorders.


2013 ◽  
Vol 21 ◽  
pp. S68-S69
Author(s):  
Y. Muramatsu ◽  
T. Sasho ◽  
S. Yamaguchi ◽  
R. Akagi ◽  
S. Mukoyama ◽  
...  

Author(s):  
Nicholas H. Yang ◽  
H. Nayeb-Hashemi ◽  
Paul K. Canavan

Osteoarthritis (OA) is a degenerative disease of articular cartilage that may lead to pain, limited mobility and joint deformation. It has been reported that abnormal stresses and irregular stress distribution may lead to the initiation and progression of OA. Body weight and the frontal plane tibiofemoral angle are two biomechanical factors which could lead to abnormal stresses and irregular stress distribution at the knee. The tibiofemoral angle is defined as the angle made by the intersection of the mechanical axis of the tibia with the mechanical axis of the femur in the frontal plane. In this study, reflective markers were placed on the subjects’ lower extremity bony landmarks and tracked using motion analysis. Motion analysis data and force platform data were collected together during single-leg stance, double-leg stance and walking gait from three healthy subjects with no history of osteoarthritis (OA), one with normal tibiofemoral angle (7.67°), one with varus (bow-legged) angle (0.20°) and one with valgus (knocked-knee) angle (10.34°). The resultant moment and forces in the knee were derived from the data of the motion analysis and force platform experiments using inverse dynamics. The results showed that Subject 1 (0.20° valgus) had a varus moment of 0.38 N-m/kg, during single-leg stance, a varus moment of 0.036 N-m/kg during static double-leg stance and a maximum varus moment of 0.49 N-m/kg during the stance phase of the gait cycle. Subject 2 (7.67° valgus tibiofemoral angle) had a varus moment of 0.31 N-m/kg, during single-leg stance, a valgus moment of 0.046 N-m/kg during static double-leg stance and a maximum varus moment of 0.37 N-m/kg during the stance phase of the gait cycle. Subject 3 (10.34° valgus tibiofemoral angle) had a varus moment of 0.30 N-m/kg, during single-leg stance, a valgus moment of 0.040 N-m/kg during static double-leg stance and a maximum varus moment of 0.34 N-m/kg during the stance phase of the gait cycle. In general, the results show that the varus moment at the knee joint increased with varus knee alignment in static single-leg stance and gait. The results of the motion analysis were used to obtain the knee joint contact stress by finite element analysis (FEA). Three-dimensional (3-D) knee models were constructed with sagittal view MRI of the knee. The knee model included the bony geometry of the knee, the femoral and tibial articular cartilage, the lateral and medial menisci and the cruciate and the collateral ligaments. In initial FEA simulations, bones were modeled as rigid, articular cartilage was modeled as isotropic elastic, menisci were modeled as transversely isotopic elastic, and the ligaments were modeled as 1-D nonlinear springs. The material properties of the different knee components were taken from previously published literature of validated FEA models. The results showed that applying the axial load and varus moment determined from the motion analysis to the FEA model Subject 1 had a Von Mises stress of 1.71 MPa at the tibial cartilage while Subjects 2 and 3 both had Von Mises stresses of approximately 1.191 MPa. The results show that individuals with varus alignment at the knee will be exposed to greater stress at the medial compartment of the articular cartilage of the tibia due to the increased varus moment that occurs during single leg support.


2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Kateřina Kolářová ◽  
Tomáš Vodička ◽  
Michal Bozděch ◽  
Martin Repko

Purpose: The purpose of the study was to describe changes in the kinematic parameters in the patients’ gait after total hip replacement. Methods: Research group of men in the end stage of osteoarthritis indicated to the THR (n = 10; age 54.1 ± 7.5 years; weight 92.2 ± 9.6 kg; height 179.7 ± 5.9 cm). All participants underwent a total of three measurements: before surgery, 3 and 6 months after the surgery. Using the 3D kinematic analysis system, the patients’ gait was recorded during each measurement session and kinematic analysis was carried out. The parameters that were monitored included the sagittal range of motion while walking in the ankle, the knee and the hip joints of the operated and the unoperated limb, and the range in the hip joint’s frontal plane, the rotation of pelvis in the frontal and transverse planes, as well as the speed of walking and the walking step length. Results: Significant increases were found in sagittal range of motion in the operated hip joint, sagittal range of motion in the ankle joint on the unoperated side and in the walking step length of the unoperated limb. Conclusions: During walking after a THR, the sagittal range of motion in the ankle of the unoperated limb increases. Also, the range of motion in the sagittal plane on the operated joint increases, which is related to the lengthening of the step of the unoperated lower limb.


Sign in / Sign up

Export Citation Format

Share Document