The Effects of Tuning an Ankle-Foot Orthosis Footwear Combination on Kinematics and Kinetics of the Knee Joint of an Adult with Hemiplegia

2010 ◽  
Vol 34 (3) ◽  
pp. 270-276 ◽  
Author(s):  
Kavi C. Jagadamma ◽  
Elaine Owen ◽  
Fiona J. Coutts ◽  
Janet Herman ◽  
Jacqueline Yirrell ◽  
...  

The effects of tuning the AFO footwear combination (AFOFC) for an adult with post-stroke hemiplegia were investigated. Gait analysis and tuning were carried out using a Vicon 3D motion analysis system and two force plates. Tuning of the AFOFC was accomplished by gradually modifying its design over a number of gait trials, to achieve optimal (i.e., as close as possible to normal, within the capability of the patient) knee kinematics and alignment of the Ground Reaction Force vector (GRF) relative to the knee joint. Heel wedges and a stiff rocker were used to tune mid-stance and terminal stance, respectively. Temporal-spatial parameters and selected kinetic and kinematic variables were compared between the non-tuned AFOFC, the tuned AFOFC immediately after tuning, and the tuned AFOFC after three months. There were several changes after three months compared to the non-tuned AFOFC, including improvement in stride length and a reduction in knee hyperextension. A subjective reduction in knee pain and improvement in function were also reported. The feasibility and the lack of objective evidence of tuning AFOFCs as a part of a clinical service need to be addressed in future research.

2007 ◽  
Vol 07 (03) ◽  
pp. 265-274 ◽  
Author(s):  
H. N. SHASMIN ◽  
N. A. ABU OSMAN ◽  
R. RAZALI ◽  
J. USMAN ◽  
W. A. B. WAN ABAS

Backpack carrying is a considerable daily "occupational" load among schoolchildren. Most of the research on children's backpacks have focused on gait pattern and trunk forward lean; only a few researches have investigated the impact of backpack carrying on children using the measurements of static posture and gait kinetics. This study investigated the changes in ground reaction force (GRF) and trunk inclination among primary students when carrying heavy backpacks. A randomized controlled experimental study was conducted on seven boys aged between 9 and 11 years old with a similar body mass index. Observations were done when the boys were carrying school bags of 0% (as control), 10%, 15%, and 20% of their own body weight while walking normally. Data acquisition was carried out using force platforms and a 3D motion analysis system. A significant difference in GRF at a load of 20% of body weight was found: the vertical GRF increased almost three times when loads increased up to 20% of body weight compared to 10% of body weight. The anterior–posterior GRFs were asymmetrical when loads were increased. When carrying a load of 15% of body weight, all of the seven subjects adopted a compensatory trunk inclination. The emphasis on GRF and trunk inclination suggests that the safest load applied does not exceed 15% of body weight.


2017 ◽  
Vol 56 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Roman Farana ◽  
Daniel Jandacka ◽  
Jaroslav Uchytil ◽  
David Zahradnik ◽  
Gareth Irwin

AbstractThe importance of technique selection on elbow injury risk has been identified for the key round off skill in female gymnastics, with a focus on the second contact limb. The aim of this study was to shift the focus to the first contact limb and investigate the biomechanical injury risk during parallel and T-shape round-off (RO) techniques. Seven international-level female gymnasts performed 10 trials of the RO to back-handspring with parallel and T-shape hand positions. Synchronized kinematic (3D motion analysis system; 247 Hz) and kinetic (two force plates; 1235 Hz) data were collected for each trial. The t-test with effect size statistics determined differences between the two techniques. No significant differences were found for vertical, anterior posterior and resultant ground reaction force, elbow joint kinematics and kinetics. Specifically, the results highlighted that change in technique in RO skills did not influence first contact limb elbow joint mechanics and therefore, injury risk. The findings of the present study suggest the injury potential of this skill is focused on the second limb during the parallel technique of this fundamental gymnastic skill.


2018 ◽  
Vol 30 (8) ◽  
pp. 966-970 ◽  
Author(s):  
Masataka Yamamoto ◽  
Koji Shimatani ◽  
Masaki Hasegawa ◽  
Takuya Murata ◽  
Yuichi Kurita

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Serap Alsancak ◽  
Senem Guner

Infantile tibia vara (ITV) is an acquired form of tibial deformity associated with tibial varus and internal torsion. As there is currently insufficient data available on the effects of orthotics on gait parameters, this study aimed to document the influence of orthosis on walking. A male infant with bilateral tibia vara used orthoses for five months. Gait evaluations were performed pre- and posttreatment for both legs. The kinematic parameters were collected by using a motion analysis system. The orthotic design principle was used to correct the femur and tibia. Posttreatment gait parameters were improved compared to pretreatment parameters. After 5 months, there was remarkable change in the stance-phase degrees of frontal plane hip joint abduction and knee joint varus. We found that orthoses were an effective treatment for the infantile tibia vara gait characteristics in this patient. Full-time use of single, upright knee-ankle-foot orthosis with a drop lock knee joint and application of corrective forces at five points along the full length of the limb were effective.


Author(s):  
Mareike Schmitt ◽  
Lutz Vogt ◽  
Jan Wilke ◽  
Daniel Niederer

Abstract Background Excessive unilateral joint loads may lead to overuse disorders. Bilateral training in archery is only performed as a supportive coordination training and as a variation of typical exercise. However, a series of studies demonstrated a crossover transfer of training-induced motor skills to the contralateral side, especially in case of mainly unilateral skills. We compared the cervical spine and shoulder kinematics of unilateral and bilateral training archers. Methods In this cross-sectional study, 25 (5 females, 48 ± 14 years) bilaterally training and 50 age-, sex- and level-matched (1:2; 47.3 ± 13.9 years) unilaterally training competitive archers were included. Cervical range of motion (RoM, all planes) and glenohumeral rotation were assessed with an ultrasound-based 3D motion analysis system. Upward rotation of the scapula during abduction and elevation of the arm were measured by means of a digital inclinometer and active shoulder mobility by means of an electronic caliper. All outcomes were compared between groups (unilaterally vs. bilaterally) and sides (pull-hand- vs. bow-hand-side). Results Unilateral and bilateral archers showed no between group and no side-to-side-differences in either of the movement direction of the cervical spine. The unilateral archers had higher pull-arm-side total glenohumeral rotation than the bilateral archers (mean, 95% CI), (148°, 144–152° vs. 140°, 135°-145°). In particular, internal rotation (61°, 58–65° vs. 56°, 51–61°) and more upward rotation of the scapula at 45 degrees (12°, 11–14° vs. 8°, 6–10°), 90 degrees (34°, 31–36° vs. 28°, 24–32°), 135 degrees (56°, 53–59° vs. 49°, 46–53°), and maximal (68°, 65–70° vs. 62°, 59–65°) arm abduction differed. The bow- and pull-arm of the unilateral, but not of the bilateral archers, differed in the active mobility of the shoulder (22 cm, 20–24 cm vs. 18 cm, 16–20 cm). Conclusions Unilaterally training archers display no unphysiologic movement behaviour of the cervical spine, but show distinct shoulder asymmetris in the bow- and pull-arm-side when compared to bilateral archers in glenohumeral rotation, scapula rotation during arm abduction, and active mobility of the shoulder. These asymmetries in may exceed physiological performance-enhancing degrees. Bilateral training may seems appropriate in archery to prevent asymmetries.


PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157010 ◽  
Author(s):  
Vincent Richard ◽  
Giuliano Lamberto ◽  
Tung-Wu Lu ◽  
Aurelio Cappozzo ◽  
Raphaël Dumas

2021 ◽  
Vol 11 (10) ◽  
pp. 4562
Author(s):  
Chien-Chung Kuo ◽  
Hsing-Po Huang ◽  
Hsuan-Yu Lu ◽  
Tsan-Yang Chen ◽  
Ting-Ming Wang ◽  
...  

Impaired motor control and musculotendon tightness in the lower extremities are characteristic features of patients with diplegic cerebral palsy (CP). Tendon release surgery (TRS) helps improve joint and leg stiffness, but the effects of TRS on inter-limb coordination in terms of the total leg stiffness, and the bilateral symmetry in leg stiffness during gait, remain unknown. Ten children with spastic diplegic CP scheduled for TRS and ten healthy controls participated in this study. The inter-limb sharing of total leg stiffness during double-limb support phase and bilateral leg stiffness symmetry during stance phase of gait were calculated using the kinematic and ground reaction force data measured by a motion analysis system. Before TRS, the patients with diplegic CP walked with a decreased share of total leg stiffness during weight-acceptance (p < 0.05) and with increased bilateral leg stiffness asymmetry during single-limb support and weight-transfer during gait (p < 0.05) when compared to healthy controls. After TRS, the bilateral leg stiffness asymmetry was significantly reduced in the CP group, especially in the terminal stance phase, with inter-limb sharing of total leg stiffness becoming similar to that in controls (p > 0.05). The surgery seemed to improve the lower limb control and increased the bilateral limb symmetry during gait.


2017 ◽  
Vol 17 (06) ◽  
pp. 1750092
Author(s):  
MARYAM HAJIZADEH ◽  
ALIREZA HASHEMI OSKOUEI ◽  
FARZAN GHALICHI ◽  
GISELA SOLE

Analysis of knee kinematics and ground reaction forces (GRFs) is widely used to determine compensatory mechanisms of people with anterior cruciate ligament deficiency (ACLD). However, the practicality of the measurements is subject to their reliability during different trials. This study aims to determine the reliability and repeatability of knee joint rotations and GRFs in people with ACLD during stair ascent. Eight participants with unilateral ACL-deficient knees performed five trials of stair ascent with each leg. The movements were captured by VICON motion analysis system, and GRF components were recorded using force plate. Three-dimensional tibiofemoral joint rotations were calculated. Intraclass correlation coefficient (ICC), standard error of measurement (SEM) and coefficient of multiple correlation (CMC) were calculated ACL-deficient legs showed lower absolute reliability during swing ([Formula: see text]–6.4) than stance phase ([Formula: see text]–2.2) for knee joint rotations. Moderate to high average measure ICCs (0.59–0.98), relative reliability, were achieved for injured and uninjured sides. The results also demonstrated high repeatability for the knee joint rotation ([Formula: see text]–0.97) and GRF ([Formula: see text]–0.99). The outcomes of this study confirmed the consistency and repeatability of the knee joint rotations and GRFs in ACL-deficient subjects. Additionally, ACL-deficient legs exhibited similar levels of reliability and repeatability compared to contralateral legs.


Sign in / Sign up

Export Citation Format

Share Document