LOWER EXTREMITIES BIOMECHANICS OF REGULAR STAIR CLIMBING: SLIM VERSUS OBESE

2015 ◽  
Vol 27 (04) ◽  
pp. 1550036
Author(s):  
Sami Almashaqbeh ◽  
Bahaa Al-Sheikh ◽  
Wan Abu Bakar Wan Abas ◽  
Noor Azuan Abu Osman

The kinematic and kinetic differences between obese and slim people when climbing a staircase at their self-selected speed are compared. A four-step wooden stair instrumented with two force plates were used as the action platform whilst the kinematic and kinetic recordings were collected and analyzed using a six-camera and two-force plate three-dimensional motion analysis system. Ten obese adults, six males and four females, and ten lean adults, six males and four females, volunteered for the study. The results showed that the obese people are able to reduce the knee joint flexion moment when climbing stair compared to the normal slim people. In the frontal plane, no significant differences were found in the knee adduction moment. Moreover, obese individuals have identified some kinematics adaptations including slower velocity and longer stance phase, compared to slim individuals. The obese individuals might adjust their gait characteristics in response to their heavy bodies to reduce or maintain the same load on the knee joint as slim individuals.

Author(s):  
S. F. Almashqbeh

The kinematic and kinetic differences between two styles of stair climbing, namely regular stair climbing (RSC) and lateral stair climbing (LSC), was studied. A four-step wooden stair instrumented with two force plates was used as the action platform. The kinematic and kinetic recordings were collected using a 6-camera, 2-force plate commercial three-dimensional motion analysis system. The LSC activity was subdivided into LSCL activity, where the right leg was the leading leg, and LSCT.


2015 ◽  
Vol 31 (6) ◽  
pp. 476-483 ◽  
Author(s):  
Yuki Uto ◽  
Tetsuo Maeda ◽  
Ryoji Kiyama ◽  
Masayuki Kawada ◽  
Ken Tokunaga ◽  
...  

The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Serap Alsancak ◽  
Senem Guner

Infantile tibia vara (ITV) is an acquired form of tibial deformity associated with tibial varus and internal torsion. As there is currently insufficient data available on the effects of orthotics on gait parameters, this study aimed to document the influence of orthosis on walking. A male infant with bilateral tibia vara used orthoses for five months. Gait evaluations were performed pre- and posttreatment for both legs. The kinematic parameters were collected by using a motion analysis system. The orthotic design principle was used to correct the femur and tibia. Posttreatment gait parameters were improved compared to pretreatment parameters. After 5 months, there was remarkable change in the stance-phase degrees of frontal plane hip joint abduction and knee joint varus. We found that orthoses were an effective treatment for the infantile tibia vara gait characteristics in this patient. Full-time use of single, upright knee-ankle-foot orthosis with a drop lock knee joint and application of corrective forces at five points along the full length of the limb were effective.


2017 ◽  
Vol 17 (06) ◽  
pp. 1750092
Author(s):  
MARYAM HAJIZADEH ◽  
ALIREZA HASHEMI OSKOUEI ◽  
FARZAN GHALICHI ◽  
GISELA SOLE

Analysis of knee kinematics and ground reaction forces (GRFs) is widely used to determine compensatory mechanisms of people with anterior cruciate ligament deficiency (ACLD). However, the practicality of the measurements is subject to their reliability during different trials. This study aims to determine the reliability and repeatability of knee joint rotations and GRFs in people with ACLD during stair ascent. Eight participants with unilateral ACL-deficient knees performed five trials of stair ascent with each leg. The movements were captured by VICON motion analysis system, and GRF components were recorded using force plate. Three-dimensional tibiofemoral joint rotations were calculated. Intraclass correlation coefficient (ICC), standard error of measurement (SEM) and coefficient of multiple correlation (CMC) were calculated ACL-deficient legs showed lower absolute reliability during swing ([Formula: see text]–6.4) than stance phase ([Formula: see text]–2.2) for knee joint rotations. Moderate to high average measure ICCs (0.59–0.98), relative reliability, were achieved for injured and uninjured sides. The results also demonstrated high repeatability for the knee joint rotation ([Formula: see text]–0.97) and GRF ([Formula: see text]–0.99). The outcomes of this study confirmed the consistency and repeatability of the knee joint rotations and GRFs in ACL-deficient subjects. Additionally, ACL-deficient legs exhibited similar levels of reliability and repeatability compared to contralateral legs.


2020 ◽  
pp. 1-9
Author(s):  
Jereme B. Outerleys ◽  
Michael J. Dunbar ◽  
Glen Richardson ◽  
Cheryl L. Hubley-Kozey ◽  
Janie L. Astephen Wilson

Total knee arthroplasty (TKA) surgery improves knee joint kinematics and kinetics during gait for most patients, but a lack of evidence exists for the level and incidence of improvement that is achieved. The objective of this study was to quantify patient-specific improvements in knee biomechanics relative to osteoarthritis (OA) severity levels. Seventy-two patients underwent 3-dimensional (3D) gait analysis before and 1 year after TKA surgery, as well as 72 asymptomatic adults and 72 with moderate knee OA. A combination of principal component analysis and discriminant analyses were used to categorize knee joint biomechanics for patients before and after surgery relative to asymptomatic, moderate, and severe OA. Post-TKA, 63% were categorized with knee biomechanics consistent with moderate OA, 29% with severe OA, and 8% asymptomatic. The magnitude and pattern of the knee adduction moment and angle (frontal plane features) were the most significant contributors in discriminating between pre-TKA and post-TKA knee biomechanics. Standard of care TKA improves knee biomechanics during gait to levels most consistent with moderate knee OA and predominately targets frontal plane features. These results provide evidence for the level of improvement in knee biomechanics that can be expected following surgery and highlight the biomechanics most targeted by surgery.


2016 ◽  
Vol 106 (6) ◽  
pp. 419-426 ◽  
Author(s):  
Joana F. Hornestam ◽  
Thales R. Souza ◽  
Paula Arantes ◽  
Juliana Ocarino ◽  
Paula L. Silva

Background: The relation between walking speed and foot kinematics during gait is not well established, and neither is it clear whether this relation is modified in the presence of factors expected to increase pronation (eg, abnormal foot alignment). Understanding how foot kinematics is affected by walking speed under varying conditions could contribute to our understanding of stresses to the musculoskeletal system during walking. We evaluated the effect of walking speed on foot kinematics in the frontal plane during gait and determined whether this effect is modified by using medially inclined insoles that force the foot into increased pronation. Methods: Twenty-six healthy young adults were assessed while walking on a treadmill wearing flat insoles and wearing medially inclined insoles. Foot kinematics in the frontal plane was measured with a three-dimensional motion analysis system. Data were analyzed during the stance phase of gait. Results: There was no main effect of speed on average calcaneal position. However, there was a significant insole type × walking speed interaction effect. In the flat insole condition, increased walking speed was associated with a less inverted average calcaneal position (or greater magnitudes of eversion), whereas in the inclined insole condition, higher speeds were associated with a less everted average calcaneal position (or increased magnitudes of inversion). Conclusions: The magnitude of foot eversion increases at faster gait speeds under typical conditions. In the presence of factors that induce excessive pronation, however, this effect is reversed. Results suggest that individuals use greater active control of foot motion at faster speeds in the presence of excessive pronation to improve push-off efficiency. Potential clinical consequences of this functional strategy are discussed.


2021 ◽  
Author(s):  
Lucas Struber ◽  
Aurélien Courvoisier ◽  
Jacques Griffet ◽  
Olivier Daniel ◽  
Alexandre Moreau-Gaudry ◽  
...  

Analysis of kinematic and postural data of adolescent idiopathic scoliosis (AIS) patients seems relevant for a better understanding of biomechanical aspects involved in AIS and its etiopathogenesis. The present project aimed at investigating kinematic differences and asymmetries in early AIS in a static task and in uniplanar trunk movements (rotations, lateral bending and forward bending). Trunk kinematics and posture were assessed using a 3D motion analysis system and a force plate. Fifteen healthy girls, fifteen AIS girls with left lumbar main curve and seventeen AIS girls with right thoracic main curve were compared. Statistical analyses were performed to investigate presumed differences between the three groups. This study showed kinematic and postural differences between mild AIS patients and controls such as static imbalance, a reduced range of motion in the frontal plane and a different kinematic strategy in lateral bending. These differences mainly occurred in the same direction whatever the type of scoliosis, and suggested that AIS patients behave similarly from a dynamic point of view.


2012 ◽  
Vol 12 (05) ◽  
pp. 1250031 ◽  
Author(s):  
YAODONG GU ◽  
JIANSHE LI ◽  
XUEJUN REN ◽  
MARK LAKE ◽  
ZHIYONG LI

The purpose of this study was to compare kinematics and kinetics during walking for healthy subjects using unstable shoes with different designs. Ten subjects participated in this study, and foot biomechanical data during walking were quantified using motion analysis system and a force plate. Data were collected for unstable shoes condition after accommodation period of one week. With soft material added in the heel region, the peak impact force was effectively reduced when compared among similar shapes. In addition, the soft material added in the rocker bottom showed more to be in dorsiflexed position during the initial stance. The shoe with three rocker curves design reduced the contact area in the heel strike, which may result in increasing human body forward speed. Further studies shall be carried out after adapting to long periods of wearing unstable shoes.


2008 ◽  
Vol 20 (04) ◽  
pp. 197-204 ◽  
Author(s):  
Pei-Hsi Chou ◽  
Shu-Zon Lou ◽  
Shen-Kai Chen ◽  
Hsin-Chieh Chen ◽  
Tsung-Hsien Wu ◽  
...  

The purpose of this study was to investigate the static and dynamic forces within the joints during push-up loading of the upper extremity. Ten healthy male students volunteered for this study. They were asked to complete six sets of push-ups in five different hand positions. The Expert Vision Motion Analysis System with six CCD cameras, and a Kistler force plate was used to measure the relative joint position and ground reaction force. Hand position was found to have a statistically significant effect on the axial force. The maximum axial force decreased from "normal" when hands were placed "apart" (45.0% BW, p = 0.012) or "superior" (44.5% BW, p = 0.01). Hand position had a significant effect on the flexion moment of the elbow joint. A greater reduction of flexion torque at 997.3 N-cm (p = 0.001) was experienced with hands "apart." Greater flexion torque existed throughout the cycle with hands "together" and equaled 2301.4 N-cm (p = 0.002). This study provides information about the kinematic and kinetic patterns of the upper extremities, and how hand position affects intersegmental loading. Attention must be given to the valgus torque encountered during push-up exercises. Patients with medial collateral ligament repair and total elbow arthroplasty should be protected from such exercises immediately post-treatment.


2013 ◽  
Vol 29 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Felix Stief ◽  
Harald Böhm ◽  
Katja Michel ◽  
Ansgar Schwirtz ◽  
Leonhard Döderlein

The standard Plug-in-Gait (PiG) protocol used in three-dimensional gait analysis is prone to errors arising from inconsistent anatomical landmark identification and knee axis malalignment. The purpose of this study was to estimate the reliability and accuracy of a custom made lower body protocol (MA) compared with the PiG protocol. Twenty-fve subjects volunteered to evaluate the intertrial reliability. In addition, intersession reliability was examined in 10 participants. An indirect indicator of accuracy according to the knee varus/valgus and flexion/extension range of motion (ROM) was used. Regarding frontal plane knee angles and moments as well as transverse plane motions in the knee and hip joint, the intersession errors were lower for the MA compared with the standard approach. In reference to the knee joint angle cross-talk, the MA produced 4.7° more knee flexion/extension ROM and resulted in 6.5° less knee varus/valgus ROM in the frontal plane. Therefore, the MA tested in this study produced a more accurate and reliable knee joint axis compared with the PiG protocol. These results are especially important for measuring frontal and transverse plane gait parameters.


Sign in / Sign up

Export Citation Format

Share Document