scholarly journals Calcium PretreatedHevea brasiliensisSawdust for Copper Removal: Batch and Column Study

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Swarup Biswas ◽  
Umesh Mishra

Calcium pretreatedHevea brasiliensissawdust has been used as an effective and efficient adsorbent for the removal of copper ion from the contaminated water. Batch experiment was conducted to check the effect of pH, initial concentration, contact time, and adsorbent dose. The results conclude that adsorption capacity of adsorbent was influenced by operating parameters. Maximum adsorption capacity found from the batch adsorption process was 37.74 mg/g at pH of 5.6. Various isotherm models like Langmuir, Freundlich, and Temkin were used to compare the theoretical and experimental data, whereas the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were applied to study the kinetics of the batch adsorption process. Dynamic studies were also conducted in packed-bed column using different bed depths and the maximum adsorption capacity of 34.29 was achieved. Characterizations of the adsorbent were done by Fourier transform infrared spectroscopy, scanning electron microscope, and energy dispersive X-ray spectroscopy.

2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


2022 ◽  
Author(s):  
Mahboobeh Monjezi ◽  
Vahid Javanbakht

Abstract Geopolymers as sustainable and environmentally friendly “green materials”, can be synthesized by utilizing waste material and by-products. A porous geopolymer foam adsorbent based on ZSM-5 zeolite was prepared using templating emulsion/chemical foaming method in different conditions and used for dye removal in batch and continuous systems. The parameters affecting the dye adsorption including temperature, concentration, and pH, kinetics, isotherm, and thermodynamics of the process were investigated. The results of the geopolymer foam synthesis showed that thermal pretreatment of the zeolite has a positive effect on the strength and adsorption capacity. Moreover, the increase in sodium silicate more than the stoichiometric reduces the strength and adsorption capacity. The findings obtained from the batch adsorption process showed that the adsorption kinetics of the pseudo-second-order model and the adsorption isotherm of the Temkin model is adjusted with the experimental data. Thermodynamic results indicated that the process of dye adsorption with geopolymer foam is exothermic. The results from continuous experiments indicated more compatibility of the adsorption process with the models of Thomas and Bohart-Adams. The maximum adsorption capacity of methylene blue in batch and continuous processes was 9.82 and 8.17 mg/g. The adsorbent reduction was performed successfully by chemical and thermal processes.


2013 ◽  
Vol 29 ◽  
pp. 34-43
Author(s):  
Puspa Lal Homagai

Cellulose, hemicelluloses and lignin are the main constituents found in sugarcane (Saccharum officinarum) bagasse having many surface active sites containing hydroxyl and/or phenolic groups which are effective for chemical modification. The biowaste was first charred with concentrated sulphuric acid and then the charred aminated sugarcane bagasse (CASB) was prepared by reduction followed by oxidation. The developed bio-sorbent was characterized by SEM, TGA/DTA, FTIR and elemental analysis. Batch adsorption methods were carried out to determine Pb+2 sorption capacities at different pH ranges and sorbate concentrations. The maximum adsorption capacity for Pb+2 was found to be 323 mg g-1 with an efficiency of 98% at pH 4.The experimental data showed a good fit to Langmuir isotherm as compared to Freundlich isotherm models. The kinetics was best fitted with the pseudo-second order model. The adsorption equilibrium was attained within 20 min. The high adsorption capacity and fast kinetics results of the charred aminated sugarcane bagasse indicated that it might be potential adsorbent for the removal of lead from contaminated water. DOI: http://dx.doi.org/10.3126/jncs.v29i0.9235Journal of Nepal Chemical SocietyVol. 29, 2012Page: 34-43Uploaded date : 12/3/2013


1970 ◽  
Vol 23 ◽  
pp. 102-105 ◽  
Author(s):  
Puspa Lal Homagai ◽  
Hari Paudyal

Saponified apple waste gel was prepared in wet condition with calcium hydroxide at highly alkaline medium. The effect of initial concentration, contact time and pH of the solution was investigated. The maximum adsorption capacity onto this adsorbent was investigated for Fe(III), Cd(II), Zn(II) and Pb(II) at their optimal pH of 3, 6, 4.5 and 3.5 respectively. Langmuir isotherm and pseudo second-order kinetic model gave better explanation of the adsorption process. For binary mixture of Zn(II) and Cd(II), the separation factor and effect on adsorption capacity for both the metals were investigated.Keywords: adsorption, saponified apple waste, bioadsorption.DOI: 10.3126/jncs.v23i0.2103Journal of Nepal Chemical Society, Vol. 23, 2008/2009 Page: 102-105


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Maria Harja ◽  
Gabriela Buema ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Dumitru Daniel Herea ◽  
...  

Fly ash/magnetite material was used for the adsorption of copper ions from synthetic wastewater. The obtained material was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area, and vibrating sample magnetometer (VSM). Batch adsorption experiments were employed in order to investigate the effects of adsorbent dose, initial Cu (II) concentration and contact time over adsorption efficiency. The experimental isotherms were modeled using Langmuir (four types of its linearization), Freundlich, Temkin, and Harkins–Jura isotherm models. The fits of the results are estimated according to the Langmuir isotherm, with a maximum adsorption capacity of 17.39 mg/g. The pseudo-second-order model was able to describe kinetic results. The data obtained throughout the study prove that this novel material represents a potential low-cost adsorbent for copper adsorption with improved adsorption capacity and magnetic separation capability compared with raw fly ash.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2295
Author(s):  
Marwa El-Azazy ◽  
Ahmed S. El-Shafie ◽  
Hagar Morsy

Biochars (BC) of spent coffee grounds, both pristine (SCBC) and impregnated with titanium oxide (TiO2@SCBC) were exploited as environmentally friendly and economical sorbents for the fluroquinolone antibiotic balofloxacin (BALX). Surface morphology, functional moieties, and thermal stabilities of both adsorbents were scrutinized using SEM, EDS, TEM, BET, FTIR, Raman, and TG/dT analyses. BET analysis indicated that the impregnation with TiO2 has increased the surface area (50.54 m2/g) and decreased the pore size and volume. Batch adsorption experiments were completed in lights of the experimental set-up of Plackett-Burman design (PBD). Two responses were maximized; the % removal (%R) and the adsorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dosage (AD), BALX concentration ([BALX]), and contact time (CT). %R of 68.34% and 91.78% were accomplished using the pristine and TiO2@SCBC, respectively. Equilibrium isotherms indicated that Freundlich model was of a perfect fit for adsorption of BALX onto both adsorbents. Maximum adsorption capacity (qmax) of 142.55 mg/g for SCBC and 196.73 mg/g for the TiO2@SCBC. Kinetics of the adsorption process were best demonstrated using the pseudo-second order (PSO) model. The adsorption-desorption studies showed that both adsorbents could be restored with the adsorption efficiency being conserved up to 66.32% after the fifth cycles.


2020 ◽  
Vol 10 (5) ◽  
pp. 1738
Author(s):  
Kay Thwe Aung ◽  
Seung-Hee Hong ◽  
Seong-Jik Park ◽  
Chang-Gu Lee

Polyacrylonitrile (PAN) fibers were prepared via electrospinning and were modified with diethylenetriamine (DETA) to fabricate surface-modified PAN fibers. The surface-modified PAN fibers were used to evaluate their adsorption capacity for the removal of Cu(II) from aqueous solutions. Batch adsorption experiments were performed to examine the effects of the modification process, initial concentration, initial pH, and adsorbent dose on the adsorption of Cu(II). Kinetic analysis revealed that the experimental data fitted the pseudo-second-order kinetic model better than the pseudo-first-order model. Adsorption equilibrium studies were conducted using the Freundlich and Langmuir isotherm models, and the findings indicated that the PAN fibers modified with 85% DETA presented the highest adsorption capacity for Cu(II) of all analyzed samples. Moreover, the results revealed that the Freundlich model was more appropriate than the Langmuir one for describing the adsorption of Cu(II) onto the modified fibers at various initial Cu(II) concentrations. The maximum adsorption capacity was determined to be 87.77 mg/g at pH 4, and the percent removal of Cu(II) increased as the amount of adsorbent increased. Furthermore, the surface-modified PAN fibers could be easily regenerated using NaOH solution. Therefore, surface-modified PAN fibers could be used as adsorbents for the removal of Cu(II) from aqueous solutions.


Author(s):  
Qingqing Liu ◽  
Xiaoyan Li

The activated MgO was synthesized by microwave homo-precipitator method and characterized by SEM, EDS and FT-IR methods. It was used to adsorption of U(VI) from aqueous solution with batch system. The paper discussed the effect of pH, temperature, contact time, adsorbent dose and initial U(VI) concentration on the adsorption. The results showed that activated MgO has good adsorption capacity for U(VI), the removal rate and equilibrium adsorption capacity reached 83.5% and 84.04mg·g−1 at pH 5.0, 15mg dose and 313K,respectively. The adsorption kinetics of U(VI) onto activated MgO were better fitted with pseudo-second-order kinetic.The adsorption isotherm data were fitted well to Freundlich isotherm model.The thermodynamic parameters showed that the adsorption process is endothermic and spontaneous.


2020 ◽  
Vol 23 (10) ◽  
pp. 370-376
Author(s):  
Thamrin Azis ◽  
La Ode Ahmad ◽  
Keke Awaliyah ◽  
Laode Abdul Kadir

Research on the equilibrium and adsorption kinetics of methylene blue dye using tannin gel from the Tingi tree (Ceriops tagal) has been carried out. This study aims to determine the capacity and adsorption kinetics of tannin gel against methylene blue dye. Several parameters, such as the effect of contact time, pH, and methylene blue dye concentration on adsorption, were also studied. Based on the research results, the optimum adsorption process is a contact time of 30 minutes and a pH of 7. The adsorption capacity increased to a concentration of 80 mg/L with a maximum adsorption capacity (qm) of 49.261 mg/g. The adsorption process follows the pseudo-second-order adsorption kinetics model and the Langmuir isotherm model.


Sign in / Sign up

Export Citation Format

Share Document