scholarly journals Inhibitory Effect of Natural Phenolic Compounds onAspergillus parasiticusGrowth

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Romina P. Pizzolitto ◽  
Carla L. Barberis ◽  
José S. Dambolena ◽  
Jimena M. Herrera ◽  
María P. Zunino ◽  
...  

Considering the impact ofAspergillusspecies on crops, it appears to be highly desirable to apply strategies to prevent their growth, as well as to eliminate or reduce their presence in food products. For this reason, the aims of this investigation were to evaluate the effects of ten natural phenolic compounds on theAspergillus parasiticusgrowth and to determine which physicochemical properties are involved in the antifungal activity. According to the results of minimum inhibitory concentration (MIC) values of the individual compounds, isoeugenol, carvacrol, and thymol were the most active phenolic components (1.26 mM, 1.47 mM, and 1.50 mM, resp.), followed by eugenol (2.23 mM). On the other hand, creosol, p-cresol, o-cresol, m-cresol, vanillin, and phenol had no effects on fungal development. Logarithm of the octanol/water partition coefficient (log P), refractivity index (RI), and molar volume (MV) were demonstrated to be the descriptors that best explained the antifungal activity correlated to lipophilicity, reactivity of the components, and steric aspect. These findings make an important contribution to the search for new compounds with antifungal activity.

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1029
Author(s):  
Xiaozai Shi ◽  
Shuo Qiu ◽  
Yingling Bao ◽  
Hanchi Chen ◽  
Yuele Lu ◽  
...  

Chitin is an important part of the fungal cell wall, but is not found in plants and mammals, so chitin synthase (CHS) can be a green fungicide target. In this paper, 35 maleimide compounds were designed and synthesized as CHS inhibitors. All the screened compounds showed different degrees of CHS inhibitory activity and antifungal activity in vitro. In particular, the half–inhibitory concentration (IC50) value of compound 20 on CHS was 0.12 mM, and the inhibitory effect was better than that of the control polyoxin B (IC50 = 0.19 mM). At the same time, this compound also showed good antifungal activity and has further development value.


2007 ◽  
Vol 62 (7-8) ◽  
pp. 519-525 ◽  
Author(s):  
Esra Küpeli ◽  
Erdem Yeșilada ◽  
İhsan Caliș ◽  
Nurten Ezer ◽  

An acetone extract obtained from aerial parts of S. stricta Boiss. & Heldr. apud Bentham, its fractions and phenolic compounds were investigated for their in vivo anti-inflammatory and antinociceptive activities. For the anti-inflammatory activity and for the antinociceptive activity assessment, carrageenan-induced hind paw edema and p-benzoquinone-induced abdominal constriction tests were used, respectively. The acetone extract of the plant and its phenolic fraction exhibited potent inhibitory activity against both bioassay models in mice. From the active phenolic fraction a well-known phenylethanoid glycoside, verbascoside (acteoside) (1), and two flavonoid glycosides, isoscutellarein 7-O-[6‴-O-acetyl-β-D-allopyranosyl-(1→2)]-β-D-glucopyranoside (2) and isoscutellarein 7-O-[6‴-O-acetyl-β-D-allopyranosyl-(1→2)]-6‴-O-acetyl-β-d-glucopyranoside (3), were isolated. During phytochemical studies we also isolated a methoxyflavone, xanthomicrol (4), from the non-polar fraction. The structures of the isolated compounds were established by spectroscopic evidence (UV, IR, 1D- and 2D-NMR, MS). Although antinociceptive and anti-inflammatory activities of the phenolic components were found not significant in the statistical analysis, compounds 1 to 3 showed a notable activity without inducing any apparent acute toxicity as well as gastric damage. Furthermore, a mixture of flavonoid glycosides (2 + 3) exhibited a significant inhibitory effect in both models at a higher dose


2019 ◽  
Author(s):  
P. Mezzomo ◽  
T.L. Sausen ◽  
N. Paroul ◽  
S.S. Roman ◽  
A.A.P. Mielniczki ◽  
...  

AbstractBiocompounds are promising tools with the potential to control pathogenic microorganisms. The medicinal plant species Ocotea odorifera, Ocotea puberula and Cinnamodendron dinisii, distributed along Brazilian biomes, are sources of chemical compounds of biological interest. This study aimed to evaluate the antifungal activity of the essential oils of O. odorifera, O. puberula and C. dinisii essential oils upon the mycotoxin producers Alternaria alternata, Aspergillus flavus and Penicillium crustosum. The essential oils where characterized by gas chromatography coupled to mass spectrometer (CG-MS). The majority compounds identified were: safrol (39.23%) and camphor (31.54%) in O. odorifera, Beta-caryophyllene (25.01%) and spathulenol (17.74%) in O. puberula, and bicyclogermacrene (23.19%) and spathulenol (20.21%) in C. dinisii. The Minimal Inhibitory Concentration (MIC) of antifungal activity considered diameters higher than 10 mm after 72 h of incubation at 30 ºC. A. alternata presented higher resistance to O. odorifera and C. dinisii oils. The inhibitory effect of O. odorifera on A. flavus showed stabilization at oils concentrations between 50% and 80%, increasing at 90% and 100% (pure oil) treatments. We observed that the essential oils of O. odorifera and C. dinisii have potential in the control of the analyzed fungi species. The essential oil of O. odorifera presented a better activity in all the assays, which can be related to the presence of safrole and phenylpropenes, compounds with known antifungal activity.


Author(s):  
Ali Karimi ◽  
Mohammad-Taghi Moradi ◽  
Somayeh Alidadi ◽  
Leila Hashemi

AbstractBackgroundAdenovirus (ADV) causes a number of diseases in human, and to date, no specific antiviral therapy is approved against this virus. Thus, searching for effective anti-ADV agents seems to be an urgent requirement. Many studies have shown that components derived from medicinal plants have antiviral activity. Therefore, the present study was aimed to evaluateMethodsIn this study, the hydroalchoholic extract of black tea was prepared and its anti-ADV activity was evaluated on HEp2 cell line using MTT [3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. The 50 % inhibitory concentration (ICResultsThe CCConclusionsHaving SI value of 25.06 with inhibitory effect on ADV replication, particularly during the post-adsorption period, black tea extract could be considered as a potential anti-ADV agent. The antiviral activity of this extract could be attributed to its phenolic compounds.


Food Control ◽  
2012 ◽  
Vol 28 (1) ◽  
pp. 163-170 ◽  
Author(s):  
José S. Dambolena ◽  
Abel G. López ◽  
José M. Meriles ◽  
Héctor R. Rubinstein ◽  
Julio A. Zygadlo

Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 132 ◽  
Author(s):  
Jing-Shuai Wu ◽  
Xiao-Hui Shi ◽  
Guang-Shan Yao ◽  
Chang-Lun Shao ◽  
Xiu-Mei Fu ◽  
...  

Aspergillus terreus has been reported to produce many secondary metabolites that exhibit potential bioactivities, such as antibiotic, hypoglycemic, and lipid-lowering activities. In the present study, two new thiodiketopiperazines, emestrins L (1) and M (2), together with five known analogues (3–7), and five known dihydroisocoumarins (8–12), were obtained from the marine-derived fungus Aspergillus terreus RA2905. The structures of the new compounds were elucidated by analysis of the comprehensive spectroscopic data, including high-resolution electrospray ionization mass spectrometry (HRESIMS), one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR), and electronic circular dichroism (ECD) data. This is the first time that the spectroscopic data of compounds 3, 8, and 9 have been reported. Compound 3 displayed antibacterial activity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 32 μg/mL) and antifungal activity against Candida albicans (MIC = 32 μg/mL). In addition, compound 3 exhibited an inhibitory effect on protein tyrosine phosphatase 1 B (PTP1B), an important hypoglycemic target, with an inhibitory concentration (IC)50 value of 12.25 μM.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 962
Author(s):  
Florence M. Mashitoa ◽  
Stephen A. Akinola ◽  
Vimbainashe E. Manhevi ◽  
Cyrielle Garcia ◽  
Fabienne Remize ◽  
...  

This study describes the impact of utilising different strains of lactic acid bacteria (LAB) for the fermentation of papaya puree and their effect on the quality parameters and bioaccessibility of phenolic compounds during simulated in vitro gastrointestinal digestion. Papaya was processed into puree; pasteurised and fermented at 37 °C for 2 days; and stored for 7 days at 4 °C using LAB strains Lactiplantibacillus plantarum 75 (L75*D2; L75*D7), Weissella cibaria64 (W64*D2; W64*D7) and Leuconostoc pseudomesenteroides 56 (L56*D2; L56*D7), respectively. Non-fermented samples at 0 (PPD0), 2 (PPD2) and 7 days (PPD7) served as controls. pH was reduced with fermentation and was lowest in L56*D2 (3.03) and L75*D2 (3.16) after storage. The colour change (ΔE) increased with the fermentation and storage of purees; L75*D7 showed the highest ΔE (13.8), and its sourness reduced with storage. The fermentation by W64*D7 and L75*D7 increased the % recovery of chlorogenic, vanillic, syringic, ellagic, ferulic acids, catechin, epicatechin and quercetin in the intestinal fraction compared to the L56*D7 and PPD7. Fermentation by W64*D7 and L75*D7 significantly improved the antioxidant capacity of the dialysed fraction compared to the L56*D7 or PPD7. L56*D7-fermented papaya puree showed the highest inhibitory effect of α-glucosidase activity followed by L75*D7. L75*D7 had a significantly higher survival rate. LAB fermentation affected the bioacessibilities of phenolics and was strain dependent. This study recommends the use of Lpb. plantarum 75 for fermenting papaya puree.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 250 ◽  
Author(s):  
Maria Audilene de Freitas ◽  
Adryelle Idalina Silva Alves ◽  
Jacqueline Cosmo Andrade ◽  
Melyna Chaves Leite-Andrade ◽  
Antonia Thassya Lucas dos Santos ◽  
...  

Candida sp. treatment has become a challenge due to the formation of biofilms which favor resistance to conventional antifungals, making the search for new compounds necessary. The objective of this study was to identify the composition of the Licania rigida Benth. leaf ethanolic extract and to verify its antifungal activity against Candida sp. and its biofilms. The composition identification was performed using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) technique. The antifungal activity of extract and fluconazole against planktonic cells and biofilms was verified through the minimum inhibitory concentration (MIC) following biofilm induction and quantification in acrylic resin discs by reducing tetrazolic salt, with all isolates forming biofilms within 48 h. Six constituents were identified in the extract, and the compounds identified are derivatives from phenolic compounds such as flavonoids (epi) gallocatechin Dimer, epigallocatechin and gallocatechin, Myricetin-O-hexoside, Myricitrin, and Quercetin-O-rhamnoside. The extract reduced biofilm formation in some of the strains analyzed, namely C. tropicalis URM5732, C. krusei INCQS40042, and C. krusei URM6352. This reduction was also observed in the treatment with fluconazole with some of the analyzed strains. The extract showed significant antifungal and anti-biofilm activities with some of the strains tested.


Sign in / Sign up

Export Citation Format

Share Document