scholarly journals Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
J.-F. Stoltz ◽  
N. de Isla ◽  
Y. P. Li ◽  
D. Bensoussan ◽  
L. Zhang ◽  
...  

Since the 1960s and the therapeutic use of hematopoietic stem cells of bone marrow origin, there has been an increasing interest in the study of undifferentiated progenitors that have the ability to proliferate and differentiate into various tissues. Stem cells (SC) with different potency can be isolated and characterised. Despite the promise of embryonic stem cells, in many cases, adult or even fetal stem cells provide a more interesting approach for clinical applications. It is undeniable that mesenchymal stem cells (MSC) from bone marrow, adipose tissue, or Wharton’s Jelly are of potential interest for clinical applications in regenerative medicine because they are easily available without ethical problems for their uses. During the last 10 years, these multipotent cells have generated considerable interest and have particularly been shown to escape to allogeneic immune response and be capable of immunomodulatory activity. These properties may be of a great interest for regenerative medicine. Different clinical applications are under study (cardiac insufficiency, atherosclerosis, stroke, bone and cartilage deterioration, diabetes, urology, liver, ophthalmology, and organ’s reconstruction). This review focuses mainly on tissue and organ regeneration using SC and in particular MSC.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2579-2579
Author(s):  
Parul Trivedi ◽  
Peiman Hematti

Abstract Human embryonic stem cells (hESCs) could potentially provide a renewable source of different types of cells for cell therapy applications. Recently, mesenchymal stem cells (MSCs) have been derived from hESCs either through co-culturing with murine OP9 bone marrow stromal cell line or directly from hESCs without co-culturing with OP9 cells. Although the latter methodology is clinically advantageous over co-culturing with an animal cell layer those mesenchymal cells were reported to be positive for SSEA4. SSEA4 is a marker of undifferentiated hESCs and thus the presence of this marker on hESC-derived cells could potentially be problematic for clinical applications. We have recently achieved a novel and reproducible methodology for deriving a pure population of SSEA4-/CD73+ MSCs from federally approved hESC lines H1 and H9. To initiate the differentiation of hESCs to MSCs, we cultured undifferentiated hESCs on matrigel plates in murine embryonic fibroblast conditioned media with media changes every 3 days. Under these culture conditions a portion of embryonic stem cells differentiated into fibroblast looking cells. Through a multi-step process which involved the use of a culture methodology similar to what is being used to culture bone marrow (BM)-derived MSCs, and passaging cultured cells at defined time points we were able to derive a pure population of cells that were uniformly positive for MSC marker CD73 in about a 4-weeks period. These cells had fibroblast/mesenchymal looking morphology, and expressed cell surface marker antigens similar to what has been reported for adult human BM-derived MSCs: they are positive for CD29, CD44, CD54, CD71, CD90, glycophorin A, CD105, and were negative for hematopoietic markers such as CD34 and CD45. Similar to adult BM-derived MSCs these cells express HLA class-I antigens but not class-II antigens. Using established differentiation protocols we could differentiate the hESC-derived CD73+ MSCs into adipocytes, osteocytes, and chondrocytes as verified by immunohistochemistry and RT-PCR assays. So far we have grown these CD73+ MSCs up to passages 15–18. These cells retained their differentiation potential, and were karotypically normal when tested at passage 12. Most importantly, we did not observe any MSCs that were double positive for CD73 and SSEA4 antigen at any time point during our experiments. MSCs from a variety of fetal and adult sources are in various stages of clinical trials with some encouraging preliminary results. Our hESC-derived MSCs that are very similar to adult BM-derived MSCs regarding their growth and morphologic properties, immunophenotypic characteristics, differentiation potential, and importantly are devoid of hESC marker SSEA4 could potentially provide a novel source of MSCs for clinical applications.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1192-1192
Author(s):  
Hirotaka Kawano ◽  
Tomotoshi Marumoto ◽  
Takafumi Hiramoto ◽  
Michiyo Okada ◽  
Tomoko Inoue ◽  
...  

Abstract Hematopoietic stem cell (HSC) transplantation is the most successful cellular therapy for the malignant hematopoietic diseases such as leukemia, and early recovery of host’s hematopoiesis after HSC transplantation has eagerly been expected to reduce the regimen related toxicity for many years. For the establishment of the safer and more efficient cell source for allogeneic or autologous HSC transplantation, HSCs differentiated from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that show indefinite proliferation in an undifferentiated state and pluripotency, are considered to be one of the best candidates. Unfortunately, despite many recent efforts, the HSC-specific differentiation from ESCs and iPSCs remains poor [Kaufman, DS et al., 2001][Ledran MH et al., 2008]. In this study, we developed the new method to differentiate HSC from non-human primate ESC/iPSC. It has been reported that common marmoset (CM), a non-human primate, is a suitable experimental animal for the preclinical studies of HSC therapy [Hibino H et al., 1999]. We have been investigated the hematopoietic differentiation of CM ESCs into HSCs, and previously reported that the induction of CD34+ cells having a blood colony forming capacity from CM ESCs were promoted by lentiviral transduction of TAL1 cDNA [Kurita R et al., 2006]. However, those CD34+ cells did not have a bone marrow reconstituting ability in irradiated NOG (NOD/Shi-scid/IL-2Rγnull) mice, suggesting that transduction of TAL1 gene was not sufficient to induce functional HSCs which have self-renewal capability and multipotency. Thus, we tried to find other hematopoietic genes being able to promote hematopoietic differetiation more efficiently than TAL1. We selected 6 genes (LYL1, HOXB4, BMI1, GATA2, c-MYB and LMO2) as candidates for factors that induce the differentiation of ESCs into HSCs, based on the previous study of hematopoietic differentiation from human and mouse ESCs. And CM ESCs (Cj11) lentivirally transduced with the respective candidate gene were processed for embryoid body (EB) formation to induce their differentiation into HSCs for 9 days. We found that lentiviral transduction of LYL1 (lymphoblastic leukemia 1), a basic helix-loop-helix transcription factor, in EBs markedly increased the proportion of cells positive for CD34 (approximately 20% of LYL1-transduced cells). RT-PCR showed that LYL1-transduced EBs expressed various hematopoietic genes, such as TAL1, RUNX1 and c-KIT. To examine whether these CD34+ cells have the ability to differentiate into hematopoietic cells in vitro, we performed colony-forming unit (CFU) assay, and found that CD34+ cells in LYL1-transduced EBs could form multi-lineage blood colonies. Furthermore the number of blood colonies originated from CD34+CD45+ cells in LYL1-transduced EBs was almost the same as that from CD34+CD45+ cells derived from CM bone marrow. These results suggested that enforced expression of LYL1 in CM ESCs promoted the emergence of HSCs by EB formation in vitro. The LYL1 was originally identified as the factor of a chromosomal translocation, resulting in T cell acute lymphoblastic leukemia [Mellentin JD et al., 1989]. The Lyl1-deficient mice display the reduction of B cells and impaired long-term hematopoietic reconstitution capacity [Capron C et al., 2006]. And, transduction of Lyl1 in mouse bone marrow cells induced the increase of HSCs and lymphocytes in vitro and in vivo [Lukov GL et al., 2011]. Therefore we hypothesized that LYL1 may play essential roles in bone marrow reconstitution by HSCs differentiated from CM ESCs. To examine this, we transplanted CD34+ cells derived from LYL1-transduced CM ESCs into bone marrow of sublethally irradiated NOG mice, and found that about 7% of CD45+ cells derived from CM ESCs were detected in peripheral blood (PB) of recipient mice at 8 weeks after transplant (n=4). Although CM CD45+ cells disappeared at 12 weeks after transplant, CD34+ cells (about 3%) were still found in bone marrow at the same time point. Given that TAL1-transduced EBs derived from CM ESCs could not reconstitute bone marrow of irradiated mice at all, LYL1 rather than TAL1 might be a more appropriate transcription factor that can give rise to CD34+ HSCs having the enhanced capability of bone marrow reconstitution from CM ESCs. We are planning to do in vivo study to prove this hypothesis in CM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1740-1747 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei Wu ◽  
Francis Karanu ◽  
Fraser Fellows ◽  
...  

Abstract Using murine models, primitive hematopoietic cells capable of repopulation have been shown to reside in various anatomic locations, including the aortic gonad mesonephros, fetal liver, and bone marrow. These sites are thought to be seeded by stem cells migrating through fetal circulation and would serve as ideal targets for in utero cellular therapy. In humans, however, it is unknown whether similar stem cells exist. Here, we identify circulating hematopoeitic cells present during human in utero development that are capable of multilineage repopulation in immunodeficient NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice. Using limiting dilution analysis, the frequency of these fetal stem cells was found to be 1 in 3.2 × 105, illustrating a 3- and 22-fold enrichment compared with full-term human cord blood and circulating adult mobilized–peripheral blood, respectively. Comparison of in vivo differentiation and proliferative capacity demonstrated that circulating fetal stem cells are intrinsically distinct from hematopoietic stem cells found later in human development and those derived from the fetal liver or fetal bone marrow compartment at equivalent gestation. Taken together, these studies demonstrate the existence of unique circulating stem cells in early human embryonic development that provide a novel and previously unexplored source of pluripotent stem cell targets for cellular and gene-based fetal therapies.


2021 ◽  
Vol 21 ◽  
Author(s):  
Ali Hassanzadeh ◽  
Somayeh Shamlou ◽  
Niloufar Yousefi ◽  
Marzieh Nikoo ◽  
Javad Verdi

: Recently, genetic engineering by various strategies to stimulate gene expression in a specific and controllable mode is a speedily growing therapeutic approach. Genetic modification of human stem or progenitor cells, such as embryonic stem cells (ESCs), neural progenitor cells (NPCs), mesenchymal stem/stromal cells (MSCs), and hematopoietic stem cells (HSCs) for direct delivery of specific therapeutic molecules or genes has been evidenced as an opportune plan in the context of regenerative medicine due to their supported viability, proliferative features, and metabolic qualities. On the other hand, a large number of studies have investigated the efficacy of modified stem cells in cancer therapy using cells from various sources, disparate transfection means for gene delivery, different transfected yields, and wide variability of tumor models. Accordingly, cell-based gene therapy holds substantial aptitude for the treatment of human malignancy as it could relieve signs or even cure cancer succeeding expression of therapeutic or suicide transgene products; however, there exist inconsistent results in this regard. Herein, we deliver a brief overview of stem cell potential to use in cancer therapy and regenerative medicine and importantly discuss stem cells based gene delivery competencies to stimulate tissue repair and replacement in concomitant with their potential to use as an anti-cancer therapeutic strategy, focusing on the last two decades in vivo studies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1474-1474
Author(s):  
Satish Medicetty ◽  
Mariusz Z Ratajczak ◽  
Magdalena J Kucia ◽  
Ewa K. Zuba-Surma ◽  
Izabela Klich ◽  
...  

Abstract Abstract 1474 Poster Board I-497 We previously demonstrated that human cord blood contains a population of small (smaller in size than erythrocytes) CXCR4+CD133+CD34+SSEA-4+Oct-4+lin−CD45− cells (Leukemia 2007:21;297-303) and that these cells are mobilized into peripheral blood during tissue organ damage as seen for example in heart infarct (J. Am. Coll. Cardiol., 2009:53;1-9.) or stroke (Stroke. 2009:40;1237.). Similar cells were also reported in murine organs, and more importantly we described that these cells may differentiate in vitro into cells from all three germ layers (Leukemia 2006:20;857–869). To explore the possibility that human VSELs could become a source of pluripotent stem cells in regenerative medicine, our goal was to develop an efficient strategy to isolate these cells from adult patients. To test if VSELs similarly to their murine counterparts could be mobilized into peripheral blood after granulocyte colony stimulating factor (G-CSF) injection (Stem Cells 2008:26;2083-2092), we enrolled a group of young healthy donors who were mobilized for two consecutive days using G-CSF (480 μg/day subcutaneously). On the third day nucleated cells (TNC) were collected by apheresis. We evaluated number of VSELs in peripheral blood (PB) samples before and after G-CSF mobilization as well as the final number in the apheresis product. At least 1 million of TNC were acquired and analyzed by FACS Diva software. Three different fractions of non-hematopoietic stem cells enriched for VSELs (Lin−/CD45−/CD133+, Lin−/CD45−/CD34+, Lin−/CD45−/CXCR4+) as well as their CD45 positive hematopoietic counterparts were analyzed. The absolute numbers of cells from each population, contained in 1 μL of sample, were computed based on percent content of each population and TNC count for each individual sample. Results show that after G-CSF mobilization, human peripheral blood contains a population of lin− CD45− mononuclear cells that express CXCR4, CD34 and CD133 antigens. These lin− CD45− CXCR4+ CD133+ CD34+ cells are highly enriched for mRNA for intra-nuclear pluripotent embryonic transcription factors such as Oct-4, Sox2 and Nanog. More importantly we found that Oct-4 was expressed in nuclei of mobilized VSELs and that these cells also express the cell surface marker SSEA-4, the early embryonic glycolipid antigen commonly used as a marker for undifferentiated pluripotent human embryonic stem cells. We observed that these adult peripheral blood-derived VSELs are slightly larger than their counterparts identified in adult murine bone marrow, but are still very small. In addition, they also possess large nuclei containing embryonic-type unorganized euchromatin. Before G-CSF mobilization only very few VSELs were detectable in peripheral blood, whereas following G-CSF induced mobilization there was a very significant increase with in excess of 106 VSELs present in the apheresis product representing less than 0.01% of TNC. We postulate that while VSELs are relatively rare cells, they are mobilized into peripheral blood and that G-CSF induced mobilization could become a novel strategy to obtain human pluripotent stem cells for regenerative medicine. Disclosures: Medicetty: NeoStem Inc: Employment, Equity Ownership. Marasco: NeoStem Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Rodgerson: NeoStem Inc: Employment, Equity Ownership.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2180-2183 ◽  
Author(s):  
A. Daisy Narayan ◽  
Jessica L. Chase ◽  
Rachel L. Lewis ◽  
Xinghui Tian ◽  
Dan S. Kaufman ◽  
...  

The human/sheep xenograft model has proven valuable in assessing the in vivo hematopoietic activity of stem cells from a variety of fetal and postnatal human sources. CD34+/lineage- or CD34+/CD38- cells isolated from human embryonic stem cells (hESCs) differentiated on S17 feeder layer were transplanted by intraperitoneal injections into fetal sheep. Chimerism in primary transplants was established with polymerase chain reaction (PCR) and flow cytometry of bone marrow and peripheral blood samples. Whole bone marrow cells harvested from a primary recipient were transplanted into a secondary recipient. Chimerism was established as described before. This animal was stimulated with human GM-CSF, and an increase in human hematopoietic activity was noted by flow cytometry. Bone marrow aspirations cultured in methylcellulose generated colonies identified by PCR to be of human origin. We therefore conclude that hESCs are capable of generating hematopoietic cells that engraft primary recipients. These cells also fulfill the criteria for long-term engrafting hematopoietic stem cells as demonstrated by engraftment and differentiation in the secondary recipient.


Blood ◽  
2006 ◽  
Vol 109 (4) ◽  
pp. 1743-1751 ◽  
Author(s):  
Eun J. Gang ◽  
Darko Bosnakovski ◽  
Camila A. Figueiredo ◽  
Jan W. Visser ◽  
Rita C. R. Perlingeiro

Abstract Adult bone marrow (BM) contains hematopoietic stem cells (HSCs) as well as a nonhematopoietic, stromal cell population. Within this stromal population are mesenchymal stem cells (MSCs), which not only support hematopoiesis but also differentiate into multiple lineages, including fat, bone, and cartilage. Because of this multipotentiality, the MSC is an attractive candidate for clinical applications to repair or regenerate damaged tissues of mesenchymal origin. However, research progress has been hampered by the limited existing knowledge of the biology of these cells, particularly by the lack of a suitable marker for their prospective isolation. Here, we report that SSEA-4, an early embryonic glycolipid antigen commonly used as a marker for undifferentiated pluripotent human embryonic stem cells and cleavage to blastocyst stage embryos, also identifies the adult mesenchymal stem cell population.


Blood ◽  
2011 ◽  
Vol 117 (15) ◽  
pp. e142-e150 ◽  
Author(s):  
Motohiko Oshima ◽  
Mitsuhiro Endoh ◽  
Takaho A. Endo ◽  
Tetsuro Toyoda ◽  
Yaeko Nakajima-Takagi ◽  
...  

Abstract Forced expression of the transcription factor HoxB4 has been shown to enhance the self-renewal capacity of mouse bone marrow hematopoietic stem cells (HSCs) and confer a long-term repopulating capacity to yolk sac and embryonic stem (ES) cell–derived hematopoietic precursors. The fact that ES cell–derived precursors do not repopulate bone marrow without HoxB4 underscores an important role for HoxB4 in the maturation of ES-derived hematopoietic precursors into long-term repopulating HSCs. However, the precise molecular mechanism underlying this process is barely understood. In this study, we performed a genome-wide analysis of HoxB4 using ES cell–derived hematopoietic stem/progenitor cells. The results revealed many of the genes essential for HSC development to be direct targets of HoxB4, such as Runx1, Scl/Tal1, Gata2, and Gfi1. The expression profiling also showed that HoxB4 indirectly affects the expression of several important genes, such as Lmo2, Erg, Meis1, Pbx1, Nov, AhR, and Hemgn. HoxB4 tended to activate the transcription, but the down-regulation of a significant portion of direct targets suggested its function to be context-dependent. These findings indicate that HoxB4 reprograms a set of key regulator genes to facilitate the maturation of developing HSCs into repopulating cells. Our list of HoxB4 targets also provides novel candidate regulators for HSCs.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3825-3825 ◽  
Author(s):  
Yimeng Gao ◽  
Radovan Vasic ◽  
Toma Tebaldi ◽  
Yuanbin Song ◽  
Rhea Teng ◽  
...  

Abstract N6-methyladenosine (m6A) is the most abundant RNA modification, with key roles in RNA metabolism and regulation of gene expression. Recent studies have elucidated a role for m6A in normal hematopoiesis and myeloid malignancies. Constitutive deletion of the m6A methyltransferase Mettl3 in zebrafish enforces endothelial identity during the endothelial-to-hematopoietic transition, thus precluding normal developmental emergence of HSPCs. Studies conducted in human CD34+ cells, as well as human and murine AML cell lines have suggested that loss of METTL3 results in resolution of differentiation blockade, and impaired engraftment in murine transplantation assays. However, the effects of METTL3 deletion on hematopoietic stem cells in the context of an intact hematopoietic hierarchy in vivo have not yet been extensively characterized. To study the effects of Mettl3 deletion on the hematopoietic system in vivo, we generated Vav-Cre METTL3-/- (VCM3-/-) mice. Deletion of Mettl3 resulted in embryonic lethality, evidenced by skewing of Mendelian ratios at birth. Occasional stillborn VCM3-/- pups were smaller than wildtype littermates, and exhibited pallor, pancytopenia, and dramatically reduced marrow cellularity. To study the effects of Mettl3 deletion on embryonic hematopoiesis, we isolated fetal liver (FL) at embryonic day 14.5 for analysis. At E14.5, expected Mendelian ratios were preserved. Western blot and qPCR confirmed loss of Mettl3 expression in VCM3-/- mice. Reduction of total m6A levels in VCM3-/- mice was confirmed by ELISA. Flow cytometry for hematopoietic markers demonstrated a significant increase in the total number and frequency of Lin-Sca+c-Kit+ (LSK) cells in E14.5 VCM3-/- FL, with an increase in the frequency of HPC-1 (CD48+CD150-) and HPC-2 (CD48+CD150+) cells. To determine the function of VCM3-/- FL cells, we performed colony forming and transplantation assays. VCM3-/- FL cells demonstrated reduced colony forming ability in methylcellulose culture, and colonies that did arise were morphologically abnormal. VCM3-/- FL cells were also deficient in hematopoietic rescue assays, with all lethally irradiated recipient mice dying by day 14 post-transplant. Transplantation of CFSE labeled cells confirmed that absence of Mettl3 -/- hematopoiesis was not attributable to a homing defect. Competitive transplantation of VCM3-/- FL with Pep3b bone marrow similarly resulted in almost total loss of peripheral blood and bone marrow VCM3-/- engraftment, whereas mice transplanted with VCM3+/+ FL maintained chimerism at 8 weeks. Interestingly, VCM3-/- FL cells and FL LSK cells displayed no differences in apoptotic rate or cell cycle. To determine the mechanism underlying the observed phenotypes, we first performed RNA sequencing of VCM3+/+ and VCM3-/- FL LSK. Mettl3 deletion resulted in the increased expression of 701 transcripts, and reduced expression of 1395 transcripts. Gene ontology (GO) analysis revealed that upregulated genes were enriched for mitochondrial function, ribosome and ribonucleoprotein complex proteins and downregulated genes for cell adhesion and developmental processes. M6A RNA modification affects mRNA stability and translation. To determine the effect of m6A depletion on the hematopoieitic stem and progenitor cell proteome we are in the process of validating changes in protein levels of select genes essential in hematopoiesis. Previously, studies have demonstrated that deletion of METTL3 in human CD34+ hematopoietic cells and AML cell lines promote myeloid differentiation. Interestingly, we see a similar depletion of myeloid progenitors in VCM3-/- FL, with an increased percentage of mature myeloid CD11b+ cells. However, these results also coincide with an increased fraction of LSK HSPCs at E14.5. Interestingly, this resembles the METTL3 knockout phenotype in embryonic stem cells, which results in a reinforced naïve pluripotent state with impaired differentiation. Our ongoing studies seek to determine the role of m6A in FL HSC maintenance and differentiation. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 14 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Mukta Agrawal ◽  
Amit Alexander ◽  
Junaid Khan ◽  
Tapan K. Giri ◽  
Sabahuddin Siddique ◽  
...  

Stem cells are the specialized cell population with unique self-renewal ability and act as the precursor of all the body cells. Broadly, stem cells are of two types one is embryonic stem cells while the other is adult or somatic stem cells. Embryonic stem cells are the cells of zygote of the blastocyst which give rise to all kind of body cells including embryonic cells, and it can reconstruct a complete organism. While the adult stem cells have limited differentiation ability in comparison with embryonic stem cells and it proliferates into some specific kind of cells. This unique ability of the stem cell makes it a compelling biomedical and therapeutic tool. Stem cells primarily serve as regenerative medicine for particular tissue regeneration or the whole organ regeneration in any physical injury or disease condition (like diabetes, cancer, periodontal disorder, etc.), tissue grafting and plastic surgery, etc. Along with this, it is also used in various preclinical and clinical investigations, biomedical engineering and as a potential diagnostic tool (such as the development of biomarkers) for non-invasive diagnosis of severe disorders. In this review article, we have summarized the application of stem cell as regenerative medicine and in the treatment of various chronic diseases.


Sign in / Sign up

Export Citation Format

Share Document