scholarly journals Synergistic Use of Geniposide and Ginsenoside Rg1 Balance Microglial TNF-αand TGF-β1 following Oxygen-Glucose DeprivationIn Vitro: A Genome-Wide Survey

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Wang ◽  
Jincai Hou ◽  
Hui Zhao ◽  
Jianxun Liu

Ischemia-activated microglia are like a double-edged sword, characterized by both neurotoxic and neuroprotective effects. The aim of this study was to reveal the synergistic effect of geniposide and ginsenoside Rg1 based on tumor necrosis factor- (TNF-)αand transforming growth factor- (TGF-)β1 balance of microglia. BV2 microglial cells were divided into 5 groups: control, model (oxygen-glucose deprivation (OGD)), geniposide-treated, ginsenoside-Rg1-treated, and combination-treated. A series of assays were used to detect on (i) cell viability; (ii) NO content; (iii) expression (content) of TNF-αand TGF-β1; and (iv) gene expression profiles. The results showed that integrated use of geniposide and ginsenoside Rg1 significantly inhibited NO level and protected cell viability, improved the content and expression of TGF-β1, and reduced the content and expression of TNF-α. Separated use of geniposide or ginsenoside Rg1 showed different effects at different emphases. Next-generation sequencing showed that Fcγ-receptor-mediated phagocytosis pathway played a key regulatory role in the balance of TNF-αand TGF-β1 when cotreated with geniposide and ginsenoside Rg1. These findings suggest that synergistic drug combination of geniposide and ginsenoside Rg1 in the treatment of stroke is a feasible avenue for the application.

2021 ◽  
Vol 22 (11) ◽  
pp. 5798
Author(s):  
Shoko Tokumoto ◽  
Yugo Miyata ◽  
Ruslan Deviatiiarov ◽  
Takahiro G. Yamada ◽  
Yusuke Hiki ◽  
...  

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


Oncogene ◽  
2004 ◽  
Vol 23 (40) ◽  
pp. 6830-6844 ◽  
Author(s):  
Natini Jinawath ◽  
Yoichi Furukawa ◽  
Suguru Hasegawa ◽  
Meihua Li ◽  
Tatsuhiko Tsunoda ◽  
...  

Author(s):  
Koichi Okada ◽  
Toyomasa Katagiri ◽  
Tatsuhiko Tsunoda ◽  
Yoichi Mizutani ◽  
Yasushi Suzuki ◽  
...  

Author(s):  
Shoko Tokumoto ◽  
Yugo Miyata ◽  
Ruslan Deviatiiarov ◽  
Takahiro G. Yamada ◽  
Yusuke Hiki ◽  
...  

Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of ametabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an ametabolic state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


2021 ◽  
Author(s):  
Shunta Sakaguchi ◽  
Yasushi Okochi ◽  
Chiharu Tanegashima ◽  
Osamu Nishimura ◽  
Tadashi Uemura ◽  
...  

During development, positional information directs cells to specific fates, leading them to differentiate with their own transcriptomes and express specific behaviors and functions. However, the mechanisms underlying these processes in a genome-wide view remain ambiguous, partly because the single-cell transcriptomic data of early developing embryos containing both accurate spatial and lineage information is still lacking. Here, we report a new single-cell transcriptome atlas of Drosophila gastrulae, divided into 65 transcriptomically distinct clusters. We found that the expression profiles of plasma-membrane-related genes, but not those of transcription factor genes, represented each germ layer, supporting the nonequivalent contribution of each transcription factor mRNA level to effector gene expression profiles at the transcriptome level. We also reconstructed the spatial expression patterns of all genes at the single-cell stripe level as the smallest unit. This atlas is an important resource for the genome-wide understanding of the mechanisms by which genes cooperatively orchestrate Drosophila gastrulation.


Blood ◽  
2012 ◽  
Vol 119 (16) ◽  
pp. 3724-3733 ◽  
Author(s):  
Louis C. Doré ◽  
Timothy M. Chlon ◽  
Christopher D. Brown ◽  
Kevin P. White ◽  
John D. Crispino

Abstract There are many examples of transcription factor families whose members control gene expression profiles of diverse cell types. However, the mechanism by which closely related factors occupy distinct regulatory elements and impart lineage specificity is largely undefined. Here we demonstrate on a genome wide scale that the hematopoietic GATA factors GATA-1 and GATA-2 bind overlapping sets of genes, often at distinct sites, as a means to differentially regulate target gene expression and to regulate the balance between proliferation and differentiation. We also reveal that the GATA switch, which entails a chromatin occupancy exchange between GATA2 and GATA1 in the course of differentiation, operates on more than one-third of GATA1 bound genes. The switch is equally likely to lead to transcriptional activation or repression; and in general, GATA1 and GATA2 act oppositely on switch target genes. In addition, we show that genomic regions co-occupied by GATA2 and the ETS factor ETS1 are strongly enriched for regions marked by H3K4me3 and occupied by Pol II. Finally, by comparing GATA1 occupancy in erythroid cells and megakaryocytes, we find that the presence of ETS factor motifs is a major discriminator of megakaryocyte versus red cell specification.


Sign in / Sign up

Export Citation Format

Share Document