scholarly journals Simultaneous Treatment with Statins and Aspirin Reduces the Risk of Prostate Cancer Detection and Tumorigenic Properties in Prostate Cancer Cell Lines

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
M. Olivan ◽  
M. Rigau ◽  
E. Colás ◽  
M. Garcia ◽  
M. Montes ◽  
...  

Nowadays prostate cancer is the most common solid tumor in men from industrialized countries and the second leading cause of death. At the ages when PCa is usually diagnosed, mortality related to cardiovascular morbidity is high; therefore, men at risk for PCa frequently receive chronic lipid-lowering and antiplatelet treatment. The aim of this study was to analyze how chronic treatment with statins, aspirin, and their combination influenced the risk of PCa detection. The tumorigenic properties of these treatments were evaluated by proliferation, colony formation, invasion, and migration assays using different PCa cell lines, in order to assess how these treatments act at molecular level. The results showed that a combination of statins and aspirin enhances the effect of individual treatments and seems to reduce the risk of PCa detection (OR: 0.616 (95% CI: 0.467–0.812),P<0.001). However, if treatments are maintained, aspirin (OR: 1.835 (95% CI: 1.068–3.155),P=0.028) or the combination of both drugs (OR: 3.059 (95% CI: 1.894–4.939),P<0.001) represents an increased risk of HGPCa. As observed at clinical level, these beneficial effectsin vitroare enhanced when both treatments are administered simultaneously, suggesting that chronic, concomitant treatment with statins and aspirin has a protective effect on PCa incidence.

2021 ◽  
Author(s):  
Xiaocong Pang ◽  
Junling Zhang ◽  
Xu He ◽  
Yanlun Gu ◽  
Wei Yu ◽  
...  

Abstract The bottleneck arising from castration-resistant prostate cancer (CRPC) treatment is its high metastasis potential and anti-androgen drug resistance, which severely affects survival time of prostate cancer (PCa) patients. In our previous study, we firstly revealed SPP1 was a potential hub signature for predicting metastatic CRPC (mCRPC) development. Herein, we integrated multiple databases to explore the association of SPP1 expression with prognosis, survival, metastatic levels in CRPC progression, and also investigated SPP1 expression in PCa tissues and cell lines. Next, PCa cell lines with overexpression or depletion of SPP1 were established to study the effect of SPP1 on enzalutamide sensitivity, and adhesion and migration of prostate cancer cell lines and further explore the underlying regulatory mechanisms. Bioinformatics analysis, PCR, immunohistochemical staining and western blot results suggested SPP1 upregulation had strong relationship with the malignant progression of CRPC. SPP1 knockdown repressed enzalutamide sensitivity, invasion and migration of prostate cancer cells in vitro. Importantly, upregulating SPP1 promoted, while silencing SPP1 attenuated epithelial-mesenchymal-transition (EMT). Our results further demonstrate that SPP1 overexpression maintains the activation of PI3K/AKT signaling and ERK1/2 pathways. Overall, our findings unraveled the functional role and clinical significance of SPP1 in PCa progression, and help to discover new potential targets against mCRPC.


Author(s):  
Yuanyuan Wang ◽  
Shanqi Guo ◽  
Yingjie Jia ◽  
Xiaoyu Yu ◽  
Ruiyu Mou ◽  
...  

ABSTRACT Prostate cancer (PCa) is one of the important factors of cancer deaths especially in the western countries. Hispidulin (4′,5,7-trihydroxy-6-methoxyflavone) is a phenolic flavonoid compound proved to possess anticancer properties, but its effects on PCa are left to be released. The aims of this study were to investigate the effects and the relative mechanisms of Hispidulin on PCa development. Hispidulin administration inhibited proliferation, invasion, and migration, while accelerated apoptosis in Du145 and VCaP cells, which was accompanied by PPARγ activation and autophagy enhancement. The beneficial effects of Hispidulin could be diminished by PPARγ inhibition. Besides, Hispidulin administration suppressed PCa tumorigenicity in Xenograft models, indicating the anticancer properties in vivo. Therefore, our work revealed that the anticancer properties of Hispidulin might be conferred by its activation on PPARγ and autophagy.


2021 ◽  
Vol 22 (13) ◽  
pp. 7226
Author(s):  
Violeta Stojanovska ◽  
Aneri Shah ◽  
Katja Woidacki ◽  
Florence Fischer ◽  
Mario Bauer ◽  
...  

Cold shock Y-box binding protein-1 (YB-1) coordinates several molecular processes between the nucleus and the cytoplasm and plays a crucial role in cell function. Moreover, it is involved in cancer progression, invasion, and metastasis. As trophoblast cells share similar characteristics with cancer cells, we hypothesized that YB-1 might also be necessary for trophoblast functionality. In samples of patients with intrauterine growth restriction, YB-1 mRNA levels were decreased, while they were increased in preeclampsia and unchanged in spontaneous abortions when compared to normal pregnant controls. Studies with overexpression and downregulation of YB-1 were performed to assess the key trophoblast processes in two trophoblast cell lines HTR8/SVneo and JEG3. Overexpression of YB-1 or exposure of trophoblast cells to recombinant YB-1 caused enhanced proliferation, while knockdown of YB-1 lead to proliferative disadvantage in JEG3 or HTR8/SVneo cells. The invasion and migration properties were affected at different degrees among the trophoblast cell lines. Trophoblast expression of genes mediating migration, invasion, apoptosis, and inflammation was altered upon YB-1 downregulation. Moreover, IL-6 secretion was excessively increased in HTR8/SVneo. Ultimately, YB-1 directly binds to NF-κB enhancer mark in HTR8/SVneo cells. Our data show that YB-1 protein is important for trophoblast cell functioning and, when downregulated, leads to trophoblast disadvantage that at least in part is mediated by NF-κB.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Xuting Xu ◽  
Dong Li ◽  
Jin Liu ◽  
Zhihong Ma ◽  
Huilian Huang ◽  
...  

Objective. The receptor-type tyrosine-protein phosphatase κ (PTPRK) is a candidate tumor suppressor involved in the tumorigenesis of various organs. However, its expression and biological roles in non-small-cell lung cancer (NSCLC) have not yet been investigated. Methods. PTPRK expression in NSCLC tissues and cell lines was examined using real-time PCR and western blotting. In addition, the effects of PTPRK on cell migration, invasion, and proliferation were evaluated in vitro. Furthermore, we explored whether the downregulation of PTPRK led to STAT3 activation in NSCLC cell lines by western blotting. The expression of phospho-STAT3Tyr705 in primary human NSCLC tissues was evaluated by immunohistochemistry. Results. The results showed that PTPRK expression was frequently reduced in NSCLC tissues with lymph node metastasis and cell lines. The inhibition of PTPRK expression resulted in increased proliferation, invasion, and migration of NSCLC cells in vitro. Additionally, after silencing of PTPRK, phospho-STAT3Tyr705 was significantly increased in NSCLC cells. Moreover, the phospho-STAT3Tyr705 levels of NSCLC tissues were positively correlated with lymph node metastasis and significantly inversely correlated with the expression of PTPRK (p<0.05). Conclusions. These results suggested that PTPRK functions as a novel tumor suppressor in NSCLC, and its suppressive ability may be involved in STAT3 activation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qi Yang ◽  
Yu-Jie Dong

Abstract Background Ovarian cancer (OC) is characterized by early metastasis and poor prognosis, which threatens the health of women worldwide. Small nucleolar RNA host gene 20 (SNHG20), a long noncoding RNA (lncRNA), has been verified to be significantly up-regulated in several tumors, including OC. MicroRNA-148a (miR-148a)/rho-kinase1 (ROCK1) axis plays an important role in the modulation of tumor development. However, whether SNHG20 can regulate OC progression through miR-148a/ROCK1 axis remains unclear. Normal human ovarian epithelial cell line and four OC cell lines were adopted for in vitro experiments. Real-time PCR was performed to assess the levels of SNHG20 and miR-148a. OC cell proliferation, apoptosis, invasion and migration were detected using clone formation, flow cytometry, transwell, and wound healing assays, respectively. Tumor xenograft assay was applied to evaluate the effect of SNHG20 on tumor growth in vivo. Results Significant higher expression of SNHG20 was observed in OC cell lines. SNHG20 markedly promoted the invasion, migration, proliferation and inhibited the apoptosis of OC cells. SNHG20 enhanced ROCK1 expression by sponging miR-148a, and the direct binding between SNHG20/ROCK1 and miR-148a was identified. Conclusion SNHG20 promoted invasion and migration of OC via targeting miR-148a/ROCK1 axis. The present research may provide a novel insight for the therapeutic strategies of OC.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Binru Li ◽  
Libo Zhu ◽  
Linlin Li ◽  
Rui Ma

Long noncoding RNAs (lncRNAs) play nonnegligible roles in the metastasis of non-small-cell lung cancer (NSCLC). This study is aimed at investigating the biological role of lncRNA OXCT1-AS1 in NSCLC metastasis and the underlying regulatory mechanisms. The expression profiles of lncRNA OXCT1-AS1 in different NSCLC cell lines were examined. Then, the biological function of lncRNA OXCT1-AS1 in NSCLC metastasis was explored by loss-of-function assays in vitro and in vivo. Further, the protective effect of lncRNA OXCT1-AS1 on lymphoid enhancer factor 1 (LEF1) was examined using RNA pull-down and RNA immunoprecipitation assays. Additionally, the role of LEF1 in NSCLC metastasis was investigated. Results indicated that lncRNA OXCT1-AS1 expression was significantly increased in NSCLC cell lines. Functional analysis revealed that knockdown of lncRNA OXCT1-AS1 impaired invasion and migration in vitro. Additionally, the ability of lncRNA OXCT1-AS1 to promote NSCLC metastasis was also confirmed in vivo. Mechanistically, through direct interaction, lncRNA OXCT1-AS1 maintained LEF1 stability by blocking NARF-mediated ubiquitination. Furthermore, LEF1 knockdown impaired invasion and migration of NSCLC in vitro and in vivo. Collectively, these data highlight the ability of lncRNA OXCT1-AS1 to promote NSCLC metastasis by stabilizing LEF1 and suggest that lncRNA OXCT1-AS1 represents a novel therapeutic target in NSCLC.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2019 ◽  
Vol 167 (3) ◽  
pp. 295-301 ◽  
Author(s):  
Yaojun Zhou ◽  
Hongqiong Yang ◽  
Wei Xia ◽  
Li Cui ◽  
Renfang Xu ◽  
...  

Abstract This study aims to study the effects of intra-nuclear lncRNA MEG3 on the progression of prostate cancer and the underlying mechanisms. Expressions of relative molecules were detected by Quantitative real time PCR (qRT-PCR) and western blot. Chromatin immunoprecipitation and RNA immunoprecipitation (RIP) assays were used to evaluate the interaction between intra-nuclear MEG3, histone methyltransferase EZH2 and Engrailed-2 (EN2). The impacts of MEG3 on the viability, proliferation and invasion of prostate cancer cells (PC3) were evaluated by methyl thiazolyl tetrazolium, colony formation and transwell assays, respectively. PC3 cells were transfected with MEG3 and transplanted into nude mice to analyse the effect of MEG3 on tumourigenesis of PC3 cells in vivo. EN2 expression was inversely proportional to MEG3 in the prostate cancer tissues and PC3 cells. RIP results showed that intra-nuclear MEG3 could bind to EZH2. Knockdown of MEG3 and/or EZH2 up-regulated EN2 expression and reduced the recruitment of EZH2 and H3K27me3 to EN2, while over-expressed MEG3 caused opposite effects. MEG3 over-expression suppressed cell viability, colony formation, cell invasion and migration of PC3 cells in vitro and inhibited tumourigenesis of PC3 cells in vivo, while EN2 over-expression diminished the effects. These findings indicated that MEG3 facilitated H3K27 trimethylation of EN2 via binding to EZH2, thus suppressed the development of prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document